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I 

The purpose of this paper is to construct a duality operation for represen- 
tations of a reductuve group over a finite field. Its effect, very roughly 
speaking, is to interchange irreducible representations of small degree with 
ones of large degree (for example, the unit and Steinberg representation.) At 
level of characters, this operation has been also considered by Alvis [ 11, 
Curtis [2], and Kawanaka [4]. 

We shall now fix some notation. G will denote a connected reductive 
group defined over a finite field Fq, (IV, S) its Weyl group, and f the set of 
orbits of the Frobenius map on S. The subsets of .!? parametrize the classes 
of parabolic subgroup of G which are defined over Fq; let 9, be the class 
corresponding to Z c S. (Thus 9, is the class of Bore1 subgroups and 
S,= {G}.) We denote by G the group of F,-rational points of G and by 9, 
the set of parabolic subgroups in 9, with are defined over Fq. Similarly, if 
P E ,3, we denote by P its group of Fq-rational points and by U, the group 
of F,-rational points of its unipotent radical. Let K be an algebraically closed 
field of characteristic zero. All G-modules will be over K. 

Let E be a G-module. For each Z c ,.% we define 

E(,, = @ Eup, 
PC.P, 

where EUP denotes the set of Up-invariant vectors of E. We regard EC,, as a 
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G-module in a natural way. If ZcZ’, there is a canonical linear map 
d: Em -+ J% * It is defined as follows: if e E E”P (P E q), e can be also 
regarded as an element of EUP’, where P’ E S,, is uniquely defined by the 
condition P c P’. (Note that U, 2 U,, hence EUP c Eup’.) The map vi, takes 
e E EUP to e regarded as an element of EUp’. It is clear that if Z cZ’ c I”, 
then 

cp;:,cp;, = cp;,<. (1.1) 

Now let EC,, = E,,, @ A “‘(K’). (We regard A “I (K’) as G-module with trivial 
action.) If Zc I’ and II’1 = 1Z1 + 1, we have a natural map E:,:A’~‘(K’)% 
A ““(K”) given by w + o A f where f is the unique element in I’ - I. We 
define &,: Z?,,, -+ Z?(,,, by $i, = cp:, 0 E:$. 

We now consider the sequence of maps of G-modules. 

where the maps d have components @i, (ZcZ’, II’1 = 111 + 1). Using (1. l), 
we see that (1.2) is a complex. 

2 

We have the following: 

THEOREM. Assume that E is irreducible. Let i, be the smallest integer >O 
such that @ ,1, = io I?(,, # 0. Then the sequence 

@ E”,,, di, @ E(,, dioil, . . . - -+ E,, -+ 0 (2.1) 
III =i, III =io+ I 

is exact, 

In particular, the homology of the complex (1.2) is concentrated in a 
single degree. 

3 

We shall prove that the conclusion of Theorem 2 holds in the case where 
instead of assuming E irreducible we shall assume that: 

(3.1) E admits a direct sum decomposition E = @pE,p,, E, (for some 
I, c S) such that 
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(a) gE, = E,,,-, (Vg E G, P E q;,); 
(b) for each P E 9,0, the P-module E, factors through P/U,, and is 

irreducible, cuspidal as a P/U, module. 

This would imply the theorem since any irreducible G-module is a direct 
summand of a G-module E as in (3.1). 

In this and the following section, we assume that E is as in (3.1). 
Given J c S, we define 2, to be the set of G-orbits o on 9, x ,P,, which 

have the following property. There exists P E Y,;,, Q E YJ, (Q, P) E u such 
that Q contains a Levi subgroup of P. 

If Q E C!FJ, we have 

EUQ= (p~,,Ep)uQ= ( pz 
cQnP,“;=P 

EP)‘O@ ( p%,. E~)“Q- 
(QnP)UpSP 

The second summand is zero (since E, is cuspidal for P/U,, so that 
E,Uflp = 0). Thus 

E,,, = @ E”Q = @ ( ,z 6) uQ = @,E”v (3.2) 
QE.PJ QEYJ 

tQnPjC$= P 

where 

E”= @ 
QE9.l 

( 0 Ep)‘;” (0EZ.J. 
P-IO 

cQnP)up= P 

Now assume that JC J’ and oEZ,; we define &,(a) = a’ = 
{(Q’, P) E S,, X S,,J 3Q E S,, Q c Q’, (Q, P) E a}. Then o’ E Z,, and we 
say that o’ is the face of type J’ of o. In this case, we define a linear map 
Yi,:E”+ E” as follows. If e= (e,,p)E E”, ep,pE Ep V(Q,P)E u, we set 
Y;,(e) = (ebt,p ) E E”’ where, for any (Q’, P) E a’, we have 

eb,,p = c 
QE.93 eQ,P E EP’ 

QcQ' 
(Q,P)Eu 

Let us admit the following 

LEMMA 3.3. For any CT, CT’ as above, the map Yz,: E”-+ E”’ is an 
isomorphism. 

Note also that given JcJ’ cJ” and u E Z,, o’ E Z,, as above we can 
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define u” E Z,,, to be the face of type J” of cr (or of a’) and we have 
y,, = q,: ’ y,. 

Using (3.2), the complex (1.2) can be rewritten as 

-L @ E"@A'J'(KJ)A . ..) (3.4) 
IJI =I101 t 1 

OEZJ 

where the maps d have components ulz, @ E;, (Jc J’, IJ’/ = 1.Z + 1, IS E Z,, 
o’ E Z,, the face of type J’ of 0). Let p be the unique element in Z,. We 
have Z? = E. Using Lemma 3.3, we may identify E” with E for any u E Z,, 
via the isomorphism !Z’z,; the complex (3.4) becomes the tensor product of E 
with the complex 

0-i . . . -bo+ @ KZ”@dJ’(KJ)+ @ KZ”@A’J’(KJ)+ ... (3.5) 
IJI = 1101 IJI=lll)lt I 

whose differential has components S;, @ E;, (Jc.Z’, IJ’( = I.ZI + 1). This 
complex has the following simple interpretation. Let T be an F,-split torus of 
maximal possible dimension in the adjoint group Gad. Let Y be the lattice of 
one-parameter subgroups of T. The root hyperplanes in the real vector space 
Y @ iR give rise to a partition of Y @ IR into simplicial cones. These are in a 
natural l-l correspondence with the parabolic subgroups in G which are 
defined over Fq and whose image in Gad contain T. Let us fix P, E yl:,. It 
corresponds to a cone in Y @ IR, which spans a linear subspace L c Y @ R 
of codimension II, I. The cones contained in L are in l-l correspondence 
with those parabolic subgroups Q c G (defined over F,) which contain a 
Levi subgroup of P, and whose image in Gad contain T, hence they are in 
l-l correspondence with u,Z,. Thus U JzsZJ can be regarded as the set of 
simplices in a triangulation of a unit sphere with centre 0 in L; and (3.5) is 
the (reduced) chain complex of this triangulation. It follows that its 
homology is concentrated in a single degree (corresponding to 1.Z = jZ,l) 
where it is zK. 

4 

It remains to prove Lemma 3.3. We will give the proof in six steps. Parts 
of the argument are similar in spirit to arguments in [3]. 

Step 1. Given a E Z, and (Q, P) E u, we consider the parabolic 
subgroup R = (Q n P) Uo c Q. Then R E 6 E Zj, Yc .Z and CJ is the face of 
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type J of 8. Also R, P have a common Levi subgroup and hence are 
associated. We first show that 

is an isomorphism. 
NOW the pairs (R, P) such that (R, P) E C? are in l-l correspondence with 

the pairs (Q, P) such that (Q, P) E u. Hence !Pf is injective. If we fix 
Q c YJ, there is a natural l-l correspondence between the set 
{R E 9~, R c Q } and the set of orbits of ZJ, on the set 
{P E .PIO, (Q, P) E a}. Hence the space E” is a direct sum over all pairs 
R c Q (R E 9,, Q E 9,) of pieces of form (@pEB)U~, where P runs through 
a fixed Uo-orbit. But this piece has the same dimension as E,,. (Note that for 
P in that Uo-orbit we have P n Ua c U, and Up acts trivially on Ep.) Thus 
dim E” = dim Ep . #(9~) = dim E, . #(Y1:,) = dim E. Similarly, dim Ea = 
dim E. It follows that pzis an isomorphism. 

Step 2. Assume that IZ,, = 1 s[ - 1. Let YJ be the class of parabolic 
subgroups opposed to YlO, and let u = {(Q, P) E 9, x ,pI,I, Q opposed to P}. 
We will show that $‘: E”-+ EP = E is an isomorphism. It is certainly non- 
zero. Thus, if E is irreducible, (p,“is indeed an isomorphism. If E is reducible, 
it has exactly two composition factors, and J is necessarily equal to I,,. For 
each P E <5& there exists an isomorphism 

VP:&% ( F 4.)” 
(P’,P)EO 

of P/U,-modules unique up to a scalar. We may assume that 
4gwg = @l,g-’ (VP E Cqf,, VgE G). These maps together define an 
isomorphism of G-modules r~ = @ qlp: 

0 Ei+ ( 9 EP) “‘. 
PE .P,, 

(P’.P)EU 

The composition q,“e r~ is a semisimple G-endomorphism of E. It clearly has 
trace zero (its diagonal blocks are zero). Let A’, A” be its eigenvalues on the 
two irreducible pieces E’, E” of E. Then A dim E’ + p dim E” = 0. Since 
dim E’ # 0, dim E” # 0, k and p are either both zero or both non-zero. They 
cannot be both zero since p,Pan f 0. Hence they are both non-zero. It follows 
that rp;y and hence o; are isomorphisms. 

Step 3. Assumethat~Z,~<~~~--l.LetJcSbesuchthat(J(=~Z,(+l, 
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and let r E 2,. There are precisely two elements a’ E Z,,, o” E Z,,, such 
that J’, J” c J, IJ’I = IJ”I = II,), and such that r is the J-face of CI’ and the 
J-face of u”. We shall prove that qt’ and qy” are isomorphisms. One of these 
maps, say rp:, is of the type considered in Step 1 (a = ?); hence it is known 
to be an isomorphism. We now turn to (py”. Define 

where, by definition, 

EL,= ( ,$ EP)“R’. 

WF927 

Then E’ is a G-module in a natural way. It satisfies a property similar to 
property (3.1) for E. Let a be the set of pairs (R”, R’) E S,,, X S,, such that 
R”, R’ are both contained in the same Q c 9, and are opposed in Q. We 
define E’” and Yp: E”+ E’ in the same way as E”= and 9;: E”“+ E. We 
have a natural commutative diagram 

E’” 2 E’ (= E”‘) 

(Note that, given (R”, P) E cr” there is a unique R’ E YJ, such that 
(R”, R’) E a, (R’, P) E a’; conversely, if (R”, R’) E a, (R’, P) E cr’ then 
(R”, P) E a”. This gives rise to the isomorphism E’“q E”“.) Now c+Y:’ is 
known to be an isomorphism; moreover, by Step 2, Ya is an isomorphism. It 
follows that o;” is an isomorphism. 

Step 4. Let u E Z,, 1 JI = 1 Z0 1. (Thus u corresponds to an open cone in 
L.) We show that C$ Ea+ E is an isomorphism. We can find a sequence 
u = u’, uz,..., u” = p of elements corresponding to open cones in L such that 
(when regarded as cones in L) two consecutive ones have a common face of 
codimension 1; moreover, we take II as small as possible. Let r be the 
element corresponding to the common face of codimension 1 of u = u’ and 
u2. By induction on n, we may assume that o: is an isomorphism. From 
Step 3, we know that C$ and fl; are isomorphisms. From p: = cp@y, it 
follows that (pi is an isomorphism. From ‘p; = oiot it follows that pz is an 
isomorphism. 

Step 5. Let Jc ,? and u E Z,. We to show that ‘pi is an isomorphism. 
We can find 1~ J and 6 E ZJ such that III= II, 1, such that u is the face of 
type J of 6, and such that ot is of the type considered in Step 1 (hence an 
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isomorphism). We have q$qx= q$. By Step 4, og is 
follows that oz is an isomorphism. 

Step 6. Let J c J’ and (I E ZJ; let (I’ E Z,, be the 

an isomorphism. It 

face of type J’ of u. 
We want to show that q,“, is an isomorphism. We have q;‘oz, = q;. By 
Step 5, ~3 and pi’ are isomorphisms. It follows that pi, is an isomorphism. 
This completes the proof of the Lemma 3.3 and hence that of the theorem. 

We have 
5 

COROLLARY (see Alvis [ 1 I). In the setting of the theorem, let E# denote 
the kernel of diO in (2.1). Then 

(a) E# is an irreducible G-module, 
(b) (E’)’ is isomorphic to E as a G-module, 
(c) (-l)‘O E”= Cl&-l)“’ E(,, 

in the Grothendieck group of virtual G-modules. 

Statement (c) is obvious. 
Let E’ be a G-module of the type considered in (3.1) which has a direct 

sum decomposition E’ = E, @ e.. @E, with Ei irreducible G-modules and 
E i z E. The proof of Theorem 2 shows that (E’)# can be defined in the same 
way as E#, and that it has the following properties: 

E ‘#z Ey@ ..a @ Ef, E’*c E’. (5.1) 

For each 1 < i, j < n, we have from (c) 

(Ei, Ej#) = (ET, Ej) = c (-1)“’ + i” (Ef%, Ej’$, (5.2) 
ICS 

(where P, E <$‘I>. It follows that 

(E~,E’)=C(E~,E~)=C(E,,E~X)=(E~,E’#)=(E~,E’) 
j i 

and, in particular, Er# 0. If Ef is not irreducible for some i, then 
Z$‘@ . . . @ z would have more irreducible components than E, 0 . . . @ E,, 
contradicting (5.1). Thus, Er is irreducible for each i. Hence, there exists a 
permutation 72 of { 1, 2,..., n} such that E” = Exci, for all i. From (5.2), we 
have 

(En*(i) 3 Et) = ((ET)“, El) = (Eyg ET) = (E,(i) 3 E,(i)) = 1. 

It follows that EnzCij is isomorphic to Ei. The corollary is proved. 



DUALITYFORREPRESENTATIONS 291 

REFERENCES 

1. D. ALVIS, The duality operation in the character ring of a finite Chevalley group, Bull. 
Amer. Math. Sm. 1 (1979), 907-911. 

2. C. W. Cuarts, Truncation and duality in the character ring of a finite group of Lie type, J. 
Algebra 62 (1980), 320-332. 

3. R. HOWLEI-~ AND G. I. LEHRER, Indiced cuspidal representations and generalized Hecke 
rings, Invent. Math. 58 (1980), 37-64. 

4. N. KAWANAKA, Fourier transforms of nilpotently supported invariant functions on a 
simple Lie algebra over a finite field, preprint, Osaka University. 


