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x. I n t r o d u c t i o n  

The  hypergeometric series 

(x) F ( a , b ; c ; x )  = Y, (a ,n) (b ,n)  x" 
.~0 (c,n) n!' I x l < x  

n - - I  

(a, n) = I I  (a + i), defined for c not an integer <__ o, was first introduced by 
i=0 

Euler in i778 as a solution of the hypergeometric differential equation 

(2) x(i - - x ) y "  + (c - -  (a + b + i) x) y '  - -  aby = o. 

F(a, b; c; x) represents the unique solution of (2) which is holomorphic at x = o and 

where 

takes the value i at x = o .  
the integral representation 

r(b) r ( c -  b) 
(3) 

I f  neither b nor c - - b  is an integer < o ,  Euler knew 

F(a, b; c; x) = z b - 1  ( I  - -  Z) c - b - I  ( I  - -  ZX) - a  d•. 

Replacing z by u- t ,  (3) also has the form 

f ~  u ~ 1 7 6  (u - I ) ~  - x ) - ~  au. (S') 

I f  we integrate instead from g to h with g and h in { o, I, 0% x } we get other solutions 
of (2), a fact discovered independently by Hermite  [9], Pochhammer  Ix 7], and Sch~ifli [I9]. 
Even when the integral diverges, it yields solutions of (2) when taken as its Hadamard  
" finite part  ", provided that  the integrand does not have a pole of integral order at g or h. 

The  hypergeometric equation (2) is the unique second order linear differential 
equation with regular singularities, singular only at o, i, oo with exponents (o, i --  c), 
(o, c -- a --  b), (a, b) respectively. " Exponents (~, ~') at a singularity p " means that  
suitable linearly independent  linear combinations of the branches of a solution have the 
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form (x - - p ) ~ f l ( x ) ,  (x --p)~' f~(x)  with f holomorphic around p; if ~ -- ~' ~ Z an 
additional logarithmic term is allowed. In 1857 , Riemann proved that the solutions 
of (2) are the only multivalued functions with exactly two linearly independent branches, 
branching only at o, I, 0o with exponents as above (cf. [I8]). Riemann's proof assumed 
that none of the exponent differences at a singularity was an integer and proceeded 
by first computing global monodromy. The above characterization of the hypergeo- 
metric equation is the basis of  Fuchs' proof of Riemann's theorem (cf. [8]). 

In  his seminal paper [20], which seeks to determine the values a, b, r for which 
the hypergeometric function is an algebraic function of x, Schwarz considered the 
map x '~ w,(x) /wl(x  ) where w 1 and w 2 form a base of W, the two dimensional linear 
space of all solutions of (2). Let 0.. denote the universal covering space of 
Q : =  PI(C) --  {o, I, OO}. The map 

(4) w : x .  w,(x)/wl(x) 

is a multivalued map from O to the projective space P(W*) of lines in the dual space W* 
of  W, i.e. w may be construed as a single-valued map 

(4') ~ :  Q . ~  P(W*). 

The fundamental  group z~l(Q) acts on P(W*) (" monodromy action ") and the map 
is nl(M)-equivariant.  Let F denote the image of z~l(Q) via the monodromy action. 
For Schwarz's original problem, the question reduces to " when is F finite? " Schwarz 
also solved the problem: when can (4) be inverted to provide a univalued map from 
an open domain to Q? When this happens F has a fundamental  domain for its action 
on either (i) P(W*), (ii) P(W*) minus a point, or (iii) a disc in P(W*), and is conse- 
quently discrete in PGL,(C).  

It is case (iii) of this latter question which Picard generalized in [I6 b] to a two 
variable analogue of the hypergeometric function. In  the more general d variable 
case, this function is best defined by its integral representation 

f l  o d + l  (3") F(x~, . . . ,Xa+x) = u-~~ - I) -~ '  II (u - -x i ) - '~ idu .  
2 

Let b% be the order of the pole of the integrand at oo. When the sum is extended over 
all the ~t's, one has ~bq = 2. In  this introduction, we assume that none of the ~t~ is 
an integer. 

The function G obtained from F by holding fixed all variables but one was inves- 
tigated by Pochhammer [I 7]. He formed the (d + x)-order linear differential equation 
satisfied by G and characterized its solutions as the multivalued functions with exactly 
d + 1 linearly independent branches and ramification of a prescribed type. At each 
finite ramification point, d branches of G are holomorphic, and at oo the same holds 
true after multiplying G by a suitable power of the variable. 



MONODROMY OF HYPERGEOMETRIC FUNCTIONS 

(i ') 

The function F defined by (3") has a power series expansion 

d + l  
I1 ( ~ ,  n~) . ( i  - -  ~,o, Znl) ~+1 

- - o  
r ( i  - - ( 2  - - E . , )  2 . , !  

For d = 2, this series has been investigated by Appell [x b] who showed that 
it satisfies a system of linear partial differential equations expressing each second deri- 
vative of F in terms of its first derivatives. In [I6 a] Picard characterized the solutions 
of this system as the multivalued functions of two variables x ,y  with exactly three linearly 
independent branches and with ramification of a prescribed type along the seven lines x 
or y = o, I, oo, x = y .  The function F is the only solution holomorphic at (o, o). 

For d arbitrary, the series (I') has been investigated by Lauricella [I2], and 
Terada  [22] obtained results parallel to those of Picard [I6 a]. 

The existence of differential or partial differential equations of Fuchsian type as 
above is to be expected if one considers (3") as a period integral. The equations are 
satisfied not only by F but also by any integral of the same integrand taken from g to h 
where g and h are in {oo, o, i, x2, . . . ,  xa+l}. There are d + x linearly independent 
such integrals, and, following Schwarz, it is natural to take them as the projective 
coordinates of a point in projective the d-space pa. This yields a map 

(4') O_ r" 

where 0..is the universal covering of the space Q c (p1)~ defincd as 

Q =  {(Xi) I Xi :~= O, I ,  OO and x, :~ xi for i :~j}. 

The action of =x(O) on 1 ~ is called the monodromy action. The map (4') is =x(Q.) 
equivariant. Let P denotc the image of~x(Q. ) in PGL(d + i, C). In [I6 a] and [I6 b] 
Picard gives a criterion for the multivalued map w : Q. ~ 1 ~ (d = 2) defined by (4') 
to invert as a univalued map from a ball in 1 ~ to a partial compactification of Q .  When 
this happens, F is discrete in a PU(I ,  d) subgroup of PGL(d + i, C). 

As pointed out in [ 14 a] the proof of discreteness of F that Picard sketches in [I 6 a] 
leads to an obstacle and is inadequate. Our  first objective in this paper is to give a 
correct proof for d = 2 and also for general d. In order to carry this out in modern 
concepts, we need only deal with rational ~q and multivalued integrands on p1 which 
are single valued on a finite ramified covering of ps. However, in order to provide 
a framework for dealing with arbitrary parameters ~t, we have introduced local systems 
on P l - - { o o ,  o, I,x2, . . . , x a + l } .  This necessitates an abovo development of holo- 
morphic cohomology in order to validate the corresponding Hodge decomposition. 
In the end, this viewpoint does have the advantage of directness. 

The two main theorems of this paper are Theorems ( I I .4)  and (I2. IQ.  The 
first says in effect: I f  o < ~ z  i <  I for all i ( o < i < d q -  I or i -~oo)  and 
( [ - - ~ q - - ~ t j ) - x  is an integer for all i4= j  such that ~ i + ~ t i <  i, then the mono- 
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dromy group of  the hypergeometric function (3") is a lattice in the projective unitary 
group PU(I ,  d), i.e. is discrete and of finite covolume. 

Theorem (12.x I) combined with (12.9) says in effect: For each non-arithmetic 
lattice arising in Theorem (i I. 4), there is an algebraic family defined over Q. of  algebraic 
curves X whose monodromy group is a subgroup of  Aut Ha(X0, Z) which is not of finite 
covolume in its Zariski-closure. 

The example 15 of  w (14.3) corresponds for instance to the family of curves, 
depending on the parameters x, y,  with equation 

U 12 = U6(U - -  1) 5 (U - -  X ) '  (U _ _ y ) l  

(a cyclic covering of order 19 of  px). 

The integrality condition that ( I  - -  ~ -  ~t~)-t be an integer ensures that the 

key map of this paper is etale in codimension one. A model situation in which inte- 
grality is used in such a way is the following. Let I) be the unit disc, D* : =  D -- {o}, 
and ~ = r/s a rational number  :> o, written as a reduced fraction. Let I) *~ be the 
finite covering olD* on which the multivalued function z ~ z = is defined. We complete 
it to the ramified covering D ~ = D *~ u {o} of D. The multivalued function z 1/8 

on D* " is " a uniformizing parameter for D ~ at o. The map z ~ z ~ from D ~ to 13 
is etale at o (i.e. etale in codimension I) if and only if ~-1 is an integer. Indeed 
z ~ = (zl / ' )  r. For a description of  how this enters the proof, we refer to the comments 

after (3. I i). 

The lists in Section 14 provide examples of  non-arithmetic lattices in PU(I ,  d) 
for d = 2, 3 - -bo th  cocompact and non-cocompact for d = 2. For d >  5, Theo- 

rem (11.4) yields no lattice at all, by (14.2) . 

The case d = i is treated in ( I2 .5 .5)  and (12.6.3) .  The lattices arising from 
Theorem (i i .4) in this case are the triangle groups [p, q, r] generated by rotations 
through double the angles with centers the vertex of a geodesic triangle in the Poincar6 
disc, with angles rc/p, rc/q, ~[r  when p ,  q, r are positive integers (or co) satisfying 
I I I 

- + - + - <  I. These lattices are described in Fricke-Klein [6] and are infinite in 
p q r 
number.  

However,  the number  of  arithmetic lattices arising is finite. An explicit list can 
be deduced from results of Takeuchi on arithmetic triangle groups [21 ]. 

In the final Section 15, we make some comments about  the list of lO2 solutions 
of  R. Levavasseur in [13] to Picard's integrality conditions for discreteness in the case 

d ~ 2 .  

In the paper " Generalized Picard lattices arising from half-integral conditions ", 
printed after this one, the second named author is able to relax the integrality condition 

on (I --  ~t~-- ~zj) -1 and obtains lattices for d <  9 [I4 b]. 
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2. C o h o m o l o g y  o f  a r a n k  o n e  l oca l  s y s t e m  o n  a p u n c t u r e d  p r o j e c t i v e  l ln e  

(2. x ) Let us start with the following data:  

P : a complex projective line; 

N : an integer 2> o; 

S : a set of  N points of  P;  

= (~,) ,~s : a family of  complex numbers indexed by S, satisfying the condit ion 

I-IOns ~'~ I .  

We will be mainly interested in the case when N > 3 and  none of  the ~, is z. 
I f  a base point  o ~ P --  S is given, the functor " fibre at o " is an equivalence 

of  the category of  complex local systems ( =  flat vector bundles) on P -- S with that  

of  complex vector spaces provided with an action of  n l ( P -  S, o). In particular,  

rank one local systems correspond to homomorphisms HI (P  -- S) = rcl(P - S, o) ab ~ C'.  

The group H~ is generated by small positive loops -f, a round  each s ~: S, with the 

relation Igy, --_ o as the only relation. Up  to isomorphism, there is hence a unique 

one dimensional  complex local system L on P - - S  such that  the monodromy  of  L 

around each s ~ S is mult ipl icat ion by %, or, as we will say, of  monodromy  ~. By 

definition, i f /o  is in the fibre of  L at a point x near  s e S, and  if we let x turn  counter  

clockwise once a round  s, and  push t o horizontally along the pa th  of  x, then when coming 

back, t o becomes a , . t  0. In  other words, in te rm of  a local coordinate z centered at s, 

and of  a mult ivalued section e(z) of L defined in a neighborhood of  s, one has 

z) . e(exp(2r~iu).z) ,=1 = ~'e(exp(2rciu)"  ,=0 

The  complex local system L has automorphisms: Aut(L) = C', with v e C" 
corresponding to multiplication by the scalar v. Because of  them,  even though the 

isomorphism class of  L is uniquely determined by the ~,, L is not determined up to 

unique isomorphism. 
Let  us fix one L. In (2 .2) - (2 .zo) ,  we will review some of  the descriptions of  

the cohomology of  P -  S with coefficients in L. 

( 2 . 2 )  Combinatorial description. - -  Let us fix a t r iangulat ion g" of  P -- S. One  

can lhen identify H ' ( P -  S, L) with the cohomology of  the complex of  L-valued 

cochains of  g': cochains c for which the value of  c on an oriented simplex ~ is a horizontal 

section of  L on ~ (thus c(a) e H~ L)).  To make sense of  the formula (de) (~) = c(b~), 

one uses that  a horizontal  section of  L on a face of  n extends uniquely as a horizontal 

section on ~r. This complex is the dual  of the complex of  chains of g" with coefficients 

in the dual  local system LV: chains C which are finite sums Zco. ~ with c o ~ H~ L v) 

and  ~ an oriented simplex of  g'.  The  sign rule ( de, C, ) ~- ( c, bC ) is however unusual 
for dual i ty  of  complexes. We write H . (P  -- S, L v) for the corresponding homology. 

I0 
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The cohomology with compact support H;(P -- S, L) is the cohomology of the 
complex of compactly supported L-valued cochains of g'. The dual complex is the 
complex of locally finite chains with coefficient in LV: chains C which are possibly 
infinite " sums " XCo. o. We write Htt(P -- S, L v) for the corresponding homology. 

Let X be obtained from P by deleting a small open disc around each s e S. 
" Small " means " small enough ". What matters here is that the closure of the discs 
be disjoint. A homotopy argument shows that (X ~ denoting X -- 0X) 

H ' (P  -- S, L) -% H'(X,  L) --% H ' ( X  ~ L) 

and that H*(X mod 0X, L) -= H~(X ~ L) -% H~(P -- S, L). 

To compute cohomology, one can hence use a triangulation of X, instead of one of 
P --  S. As X is compact, the triangulation is finite, and this combinatorial description 
makes clear that the Euler-Poincard characteristic 

z(P -- S, L) : =  X(--  I ) id im Hi(P --  S, L) 

(resp. z,(P -- S, L ) : =  Y.(-- z) 'd im H ~ ( P -  S, L)) 

is independent of L. Each H i (resp. Hi,) is indeed expressed as the i-th cohomology 
group of a finite dimensional chain complex K, and dim K i is independent of L. In 
the case of cohomology with compact support, the additivity of Zc (deduced from the 
long exact sequence . . .  -+ H~(P -- S, C) --* Hi(P, C) -+ Hi(S, C) ~ . . . )  gives 

( 2 . 2 . x )  x , ( P  - -  S ,  L )  ---- x , ( P  - -  S ,  C)  ---- z~ (P)  - -  x , ( S )  = 2 - -  N .  

For an algebraic variety Y, one always has ;G(Y) = z(Y). In  the case at hand 
(Y = P -  S); this can be deduced from Poincard duality. One gets 

( a . 2 . 2 )  z ( P  - -  S ,  L )  = 2 - -  N .  

(2"3) De R h a m  (C ~ description. - -  H ' ( P -  S, L) is the cohomology of the de 
Rham complex of L-valued C ~ differential forms on P --  S, and Hc(P --  S, L) that 
of  the subcomplex of compactly supported forms. I f  the triangulation g" of (2.2) is 

integration: o~ ~ c,~(~) = fo co is defined. It is a map of complexes smooth, from 

the de Rham complex to the cochain complex (both with or without support condition), 
inducing an isomorphism on cohomology. 

The Poincard duality pairing obtained by integration on P - S : at, [3 ~fp_s0 t  A 

induces a perfect pairing 

H'(P -- S, L) | H2,-'(P -- S, L v) -% C, 

the composite of cup product with value in H ~ ( P - - S ,  C), and of the trace, or 

integration, map : H~(P --  S, C) -% C. 

I f  at least one of the ~, is not i, there can be no global horizontal section: 
H ~  S, L) = o, and a fortiori none with compact support: H ~  S, L) = o 

11 
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(for this, See  0 suffices). The  same applies to the dual  L v of  L, with m o n o d r o m y  =-1, 
and  Poincar6 dual i ty  gives vanishing for I r  a and H~c. The  Euler-Poincard characterist ic 
being known ( ( 2 . 2 . I )  and (2 .2 .2 ) ) ,  we get 

Proposition (2.3.  �9 - -  I f  % ~: I for at least one s � 9  then H I ( P - - S , L )  and 
H~,(P - -  S, L) vanish for i :~ I, and 

dim H*(P -- S, L) = d im H~,(P - -  S, L) = N --  2. 

Currents (2 .4) .  - -  Ins tead of  using the C ~~ de R h a m  complex,  consisting of  forms 
writ ten in local coordinates as ]~fl  dxi 1 ̂ . . .  ^ dxil.e, with e an horizontal  section 

i 

of  L and  f a C%funct ion,  one can as well use the complex  of  currents, where  f l  is 
a l lowed to be  a generalized function (distribution).  This  complex can be  used to 
express Poincar6 dual i ty  as a cap-produc t  isomorphism be tween homology and cohomo-  

logy: for C a LV-valued chain, there is a unique current  (C) such that  fc ~ = f (C) ^ ca, 

one has d(C) = ( - -x)aogcbC,  and  the map  C ~ ,  (C) provides isomorphisms 
H,(P  - -  S, L) --% H2c-'(P - -  S, L) and H~t(P - -  S, L) -% H z - ' ( P  - -  S, L).  

I t  is often more  convenient  to use currents than the chains of  a fixed tr iangulation.  
I f  ~ is a rectifiable proper  map  from an open, semi-open or closed interval I to P - -  S, 
and for e ~ H ( I ,  [~" LV), we let (e.[3) be the LV-valued current  for which  

f(e.~)A~=fi<e,~'(o>. 
I f  ~ : [o, x] -+ P maps o and I to S, and ]o, I [ to P - -  S, then for e e H~ x [, [~* LV), 
e .~ is a cycle and as such defines an homology  class in H ~ t ( P -  S, LV). We will 
use such cycles to construct  convenient  bases of  H ( t ( P -  S, LV). 

(2 .5 )  Assume the following is given: 

a) a part i t ion of  S into two subsets S t and $2; 
b) trees T1 and T2 (a tree is a contract ible  C W  complex  of  dimension <__ i),  and  an 

embedd ing  [~ : T x H Tz '-+ P, mapping  the set of  vertices of  T 1 (resp. Tz) onto $1 

(resp. $2) ; 
c) for each (open) edge a of  T 1 or  Tz, an orientat ion of  a, and t(a) ~H~ [~" LV). 

For each edge a, t ( a ) . ~ l a  is then a locally finite cycle on P -- S, with coeffi- 

cient in L. 

Proposition (2 .5 .  x). - -  I f  II  % ee I, the elements eta). ~ l a ,  for a an edge of T 1 
s~8~ 

or T2, form a basis of H~t(P --  S, gv) .  

Proof. - -  Let  T~ be the disjoint union of  the (open) edges of  T i. We have 

(P - -  S) - -  ~(T~ H T~) = P - }(T,  H T2), hence a long exact sequence 

. . .  -+ H[t(T't H T~, }* L v) L H[ ' (P  - -  S, L) 

-+tIfr  - -  }(T1 H T2), L v) ~ . . .  

12 
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The  group H~t(T'II_I T~, [3*L v) has as basis the t ( a ) . a .  I t  remains to be proved 

that  H~t(P --  ~(Ta II T2) , L) = o. 
The  space P -  ~(T1) -- ~(T2) is the complement  of  two disjoint trees in S 2. 

I t  is essentially an  annulus.  The  monodromy  of  " turning a round  Tt  " is the product  

of  the o~s (s E SI). In P --  S, a loop a round  T 1 can indeed be homotoped  to a product  

of  loops a round  each s e S  l : 

The  group H ~ t ( P - - ~ ( T t o T 2 )  , L  v) is dual  to 

is the Poincard dual  of  H 2-~(P --  ~(T 1 tJ T2) , LV). 
to S 1, and  the group becomes H~-i(S t, LV), for L v 

remains to use the 

X 
/ 

x ,  T2 ~ ~  

H~,(P --  ~(T x u T2) , L),  which 

One  can homotope P -- ~(T 1 u T2) 
a non trivial local system on S 1. I t  

Lemma (2 .5 .2 ) .  - -  I l L  is a non trivial rank one local system on S 1, then H'(S t, L) = o. 

The  H ~ is o by non triviality, and  z(S 1, L) = x(S l) = o. 

Remark. - -  As T i l I T  2 has N - - 2  edges, (2 .5 .2)  reproves tha t  

d im H~(P --  S, L) = N -- 2 

when the ~s are not all I. 

(2 .6)  Sheaf  cohomology. ~ We will always identify a local system L with its sheaf 
of  locally constant  sections. Le t  j denote the inclusion of  P - - S  in P. Then,  

H; (P  --  S, L) is the cohomology of P with coefficients i n j l  L, the extension of  L by o. 

I t  is the hypercohomology on P of  any  complex of  sheaves K with .,~r176 ---- Jl L and  
~ ( K )  = o for i 4= o. On  the other hand,  if L ~ is any  resolution of  L whose components  

are acyclic for]'. ( R q j .  L k = o for q > o), then H ' ( P  -- S, L) is the hypercohomology 

on P of  jo L' .  To  prove it, one reduces to the case where L" (and hence j .  L*) is soft, 

one has F(P --  S, L') = F ( P , j .  L') ,  and  

H ' ( P  --  S, L) : =  H" F(P  --  S, L*) = H ~ F ( P , j .  L') = :  t t ' (P ,  jo L~ 

Proposition ( 2 . 6 .  �9 ). - -  I f  all oc s are different f rom I, then 

H~(P --  S, L) -% H ' ( P  --  S, L). 

Proof. - -  Let L ~ be a soft resolution of  L, for instance the L-valued C ~~ de R h a m  
complex of  sheaves. I t  suffices to check that  jo L ~ is a resolution of  jr L, and  this results 

from the local fact that  for D any  small disc a round  s E S, one has 

H" F(D --  s, L') = H ' ( D  --  s, L) = o. 

To check this vanishing, one can replace D -- s by a homotopic  S 1 and  apply (2 .5 .2) .  
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From the point of  view of homology, this implies that a locally finite x-cycle with 
coefficient in L v is homologous to a compactly supported one. Here  is a drawing of 

how it can be done 

" [ 1 
,. : ~ . ,  . . . .  ) �9 

This is reminiscent of the arguments used in Whittaker and Watson (I2.22) (Hankel's 

expression of F(z) as a contour integral) or (x2.43) [24]. 

(2 .7)  The de Rham (holomorphic) descr~tion. - -  The holomorphic L-valued 
de Rham complex ~*(L) : 0(L) -+ ~I(L) is a resolution of  L on P -- S. One can hence 

interpret H * ( P - -  S, L) as the hypercohomology on P - -  S of ~ ' (L) .  As S =I= O, 
P - - S  is Stein, hence H q ( P - - S , ~ P ( L ) )  = o  for q > o ,  and this gives 

( a . 7 . , )  H*(P - -  S, L) = H* F(P - S ,  ~2"(L)). 

Similarly, Rqjof lP(L) - - -o  for q >  o hence 

H*(P --  S, L) : H ' ( P , j .  Y~'(L)) 

(hypercohomology of  P, with coefficients in the complex jo ~*(L); see (2.6)).  
After the preliminaries (2.8), (2.9), we will show how to replace j o ~ ' ( L )  by 

smaller complexes of sheaves. 

(2 .8)  We will often describe a section of 0(L) on a connected open set U as tile 

product of  a multivalued function with a multivalued section of  L. This has the 
following meaning: U should be provided with a base point 0, and a multivalued section 
of  a sheaf ~" (0, or L, . . . )  is a section of  the pull back of  ~-  on the universal cove- 
rings (0 ,  0) of (U, 0). Products are taken on 0 .  A multivalued section, which is the 
pull-back of  a section on U, is then identified with that section. The role of  the base 
point can be played by a contractible subset of  F of  U. A section of L at 0 extends 
uniquely to a multivalued section and will be denoted by the same symbol. A multi- 

valued section of  �9 is determined by its germ at 0, and will be denoted by the same 
symbol. As multivalued sections of  0, we will mainly use products llgp'. When g 
is not real and negative, the principal determination of g~ is exp(2xi~t log g), with 
I Im log g [ <  r~i. As a rule, g~ will denote the multivalued function whose germ at 
the base contractible set F is the principal determination when g~ is not real and negative 
on F. When the determination used is irrelevant, we will not take the trouble of 

specifying which one we mean. 

(2 .9)  Fix s ~ S and let z be a local coordinate, which we take to be an iso- 

morphism, carrying s to o, of  a small neighborhood D of s with a disc in C centered 
at o. I f  ~t E C is such that a, ---- exp(2zci~t), the monodromy of z -~' around s is the 

inverse of that of  a horizontal section of  L. Any section u of 0(L) (resp. ~I(L)) on D" 
can hence be written u ---- z- ~. e . f  (resp. u -~ z-~'. e . f .  dz) with e a non zero multi- 

14 



MONODROMY OF HYPERGEOMETRICI FUNCTIONS x5 

valued section of L and f a holomorphic function on D'. We define u to be meromorphic 
at s i f f  is, and we define its valuation by 

v s ( u )  = v o ( f )  - 

These definitions are independent of  the choices of  local coordinate and of  ~z. 

(2 .xo)  The de Rham (meromorphic at S)  description. ~ Let us write j~  O'(L) for 

the subcomplex of  fY(L) of meromorphic forms. A local computation around each 
s ~ S shows that the inclusion o f j .  ~ fY(L) in 3". f~'(L) induces an isomorphism on the 
cohomology sheaves. This implies that 

( 2 . x o . I )  H'(P,j.~f2"(L)) -~ H ' ( P , j .  fY(L)) = H ' ( P  -- S, L). 

It follows from (2. x I) below that j ?  f~P(L) is an inductive limit of line bundles 
whose degrees tends to oo. From this one concludes first that I-Iq(P,j? f~V(L)) = o 
for q > o, and then that H*(P, j~ fY(L)) is simply H* F ( P , j  m O'(L)), the cohomology 

of the complex of L-valued forms holomorphic on P -- S and meromorphic at each 
s eS :  

(2 .xo .2 )  H ' ( P  --  S, L) = H" r ' (L j . "  t2"(L)). 

(2. x l )  Let (~z,),e s be a family of  complex numbers, such that exp(2ni~t,) = 0q. 
We define the line bundle 0(Z~z, s)(L) as the subsheaf of  j.~ d~(L) whose local holo- 
morphic sections are the local sections u of  j.m O(L) such that for s ~ S, the integer 

v,(u) + ~t, is > o (in short: v,(u) >__ - -  ~,). With the local coordinate notation (2.9), 
z -~ , . e  determines an invertible section of O(X~z0 s) (L) near s ES. The degree of a 
meromorphic section u of a line bundle ~ at a point x is the order of the zero (or minus 
the order of the pole) o fu  at x, for z a local coordinate centered at x, it is the supremum 
of  the integers n such that z - " u  is a holomorphic section of  .2 ~ at x. The degree of .LP 
is the sum of the degrees at all points of any non zero meromorphic section of  .~. I f  
u is a meromorphic section of 0(Z~t s s)(L) and x ~ S, one has 

deg~(u) = vx(u ) + ~t~. 

I f  one defines ~ t ~ = o  for x ~ P - - S ,  the same holds at any x c P .  

Proposition (2. xx.  x ). ~ The line bundle d~(Z~q s) (L) is of  degree Z~t 8. 

Proof. ~ We may assume P = p1 and oo r S. Let e be a muhivalued horizontal 

section of  L. The product 

u =  I'I ( z - - s ) - ~ ' . e  
8E8 

is an invertible section of d~(ZEz,.s)(L) on the affine line. At oo, u is meromorphic, 
o f  valuation Z~z,. The degree of O(Z~t, s) (L), equal to the sum at all x e P of  the 

degree of  any non zero meromorphic section, is hence Z~q. 

16 



t6 P .  D E L I G N E  A N D  G .  D .  M O S T O W  

We define f~t(Ycts.s ) (L) : =  0(X~t,.s) (L) | I t  results from (2. I I )  that  

( 2 . x x . x )  degf~l(X~q.s) (L)  = - -  ~ + Xtx i. 

In  part icular ,  if  Y,~t i = 2, the line bundle  f2t(Yqz,.s)(L) is of  degree o, hence 
isomorphic to 0, the trivial line bundle .  

Corollary ( 2 .  t 2 ) .  - -  I f  Y.~t, = 2, there is up to a constant factor one and only one nor, 

zero f o rm  o~ ~ p(p ,  j m At(L))  whose valuation at s e S is > - -  ~t,. One has v,(o~) = - -  ~t, 

and co is invertible on P - -  S. 

For P = pt ,  oo r S, and  e a mul t ivalued horizontal  section of  L, one has (up 

to a factor) co = I I  (z - -  s ) -~ ' , . e .dz .  I f  ~ E S, one has o = 1-I (z - -  s ) - ~ , . e . d z .  
s~8 s ~ S - o o  

Proposition (2 .  I3) .  - -  Assume that EVq = % N _> 3, and that none o f  the o~, is I 

(i.e. that none o f  the ~t, is an integer). Then the cohomology class o f  the f o rm  co o f  (2 .12)  is 

not zero. 

Proof. ~ On e  has Y,v,(o~) = E - -  ~ , = - - 2 >  x - - N .  The  proposit ion hence 
results f rom the 

Proposition (2 .  x 4). - -  Assume that none o f  the ~, is i .  I f  a non zero form to is such that 

Zv,(~o) >__ i - -  lXr, its cohomology class is not zero. 

Proof. ~ By (2 .1o .2 ) ,  it suffices to verify that  the equat ion o~ = du has no 

solution u ~ I ' (P , j . "  O(L)).  
For  any local section u of  j .  ~ O(L) near  s, one has 

v , (au)  > v , (u)  - i ,  

with equal i ty  if vs(u ) is not  o, or if v,(du) is not  a positive (meaning > o) integer. The  
integer case being excluded,  a solution u would  be a section of  0 ( - -  Z(v,(o~) + x) s) (L), 
a line bundle  of  degree - -  Z(v~(o~) + i) _< - -  i, a contradict ion.  

(2. x5) H e r e  is how (2. x3), (2. I4) has to be modified for integral ~t's. As the 
result will not  be needed,  except for some historical comments  in w ~5, we will be sketchy. 

(2. x 5. x) When  some 0t~ are I, (2 .6 .  i) is not  true, one has to distinguish be tween  Hlc 
and  H ~, and even to in t roduce some intermediate  groups: for S' C S, the family @(S') 

o f  subsets o f  P - -  S closed in P - -  S' is a family of  supports,  and H~cs,I(P - -  S, L) 
is defined. F o r j '  the inclusion of  P - -  S into P - -  S', it is H ' ( P - -  S' ,j~ L). For  
T C S ,  define T ( I ) : = { s ~ T ] 0 c , =  I}. The  p roof  of  ( 2 . 6 . I )  shows that  

H~cs,0))(P - -  S, L) -% H~Is,)(P --  S, L).  

These groups are also the hypercohomology  groups, on P, of  the subcomplex 
of  j." f~'(L) consisting of  the u in j ."(L) and of  the o~ in j." At(L) such that  v,(c0) > o 
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and  v,(u) > o for s e (S - -  S') (I) .  I f  the Fq are such that  ~, = exp(2r~i~t,), and  

that  S ' ( I )  is the set o f s  for which  ~t, is integral > o, the groups Ho(s.I(P - -  S, L) are 
also the hypercohomology  groups of  the sub-complex d~(Z(,u., - -  I) s) (L) -+ ~ ( ~ ,  s) (L) 
of  j 7  f~" (L). 

( 2 . x 5 . 2 )  I f  to e F ( P , j " ~ I ( L ) ) ,  and  if all s with  m8 = I and v,( to)< o are 
in S', then to defines a cohomology class in H~Is,)(P - -  S, L). I f  in addi t ion S' contains 
none of  the s for which  simultaneously a, = I and  v,(to) _> o, and if further  

Y.v,(to) > i - - N  (which amounts  to co having at most N - - 3  zeros, coun ted  with 
multiplicities, on P -  S), the p roof  of  (2. I4) still shows that  the class of  co in 
H~>Is,I(P - -  S, L) is not  zero. This applies to the form to of  (2.12) ,  wi th  S ' =  S, 

provided N >  3 and  F t , > o  whenever  Ft, e Z .  

Remark (2. x6). I Let  us assume that  none of  the a, is x. I f  to is an holomorphic  
section o f f e r (L )  on P - - S ,  by  ( 2 . 6 . I ) ,  the class [to] o f  6o in H I ( P  - S , L )  is the 
image of  a unique  class, again denoted [to], in HI~(P - -  S, L).  For  any locally finite 
cycle or  current  C with coefficient in L v, <[C],  [to]) is defined: H ~ / ( P -  S, L v) is 

indeed paired with HI~(P - -  S, L). We  wan t  to prove that  

<[c],[to]>=fcto. 
This is not  complete ly  obvious, especially since the integral may  be divergent.  T he  
p rob lem is ra ther  to unders tand  which  value the cohomological  formalism at taches to 
the integral. 

zst answer: One  replaces C by  a finite homologous cycle C',  as p ic tured in (2 .6) ,  

and < [ C ] , [ t o ] > = f c ,  to. 

2nd answer: I f  D,  is a small open disk a round  s ~ S, one has H ' ( D  - -  s, L) = o 
(cf. (2 .6)) .  O n  D] : =  D --  s, to is hence of  the form du,, for a unique section u, o f  0(L)  

on D]. Let  % be a compact ly  suppor ted  C ~~ function on D~, equal  to x in a ne ighborhood 
ofs .  The  C ~ I-form to - -  Y~ d(cp, us) is cohomologous  to to and is compact ly  supported.  

One  has hence 

I t  is sometimes more  convenient  to take for cp the (discontinuous) characterist ic function 
of  D, .  The  current  to - -  Z d(% u,) is again compact ly  suppor ted  and cohomologous  

to  to. 

These formulae  can also be used to define the integral of  co on a locally finite chain 

or  current,  which is a cycle only near each s ~ S. Given for instance a pa th  [3 : [o, I] -+ P, 

17 
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with  [~([o, I D in P --  S and  ~ ( I )  = s ~S,  and  given e ~H~ I[, [~*LV), the 

f ,  c o -  d(q~,u,) can formula  for the " finite par t  " .~ be rewrit ten 

Pyre. co = f~ - "  <e, 6" co> - < e ( a t i  - -  r  I~* u . ( a t  ! - r  

For  a meromorphic  co, this agrees wi th  H a d a m a r d ' s  " finite part  " of  a divergent integral.  

Example (2.x7) .  - -  We take P = p1, S = { o ,  I, oo} and  we assume tha t  none 

o f  the ~z, is an  integer, and  that  Z ~ z , = 2 .  For  ) , , =  i - -  [z,, this means Z ) , , =  I. 
We normalize L by fixing a section e of  it on ]o, I [, and  we let e v be the dual  base of  L v 

on  ]o, I[. Take  co -- zX,-l(i --  z)X,-X.e dz; the " principal " de terminat ion  of  z x'-~ 

and  of  ( i - - z )  x ' - t  on ] o , I [  is used (cf. (2.8)) .  By ( 2 . 5 . I ) ,  the homology 
H~t(P --  S, L v) is one-dimensional,  generated by the current  e v . ]o ,  I[. The  content  

o f  (2.13) here is that  

x7.z  ) Pf f :  zX'- ' (I  -- z) x'-1 dz . o. (2.  

The generalization (2. I5) of  (2. I3) can be used to extend this to the case when  

Xo and  ix, if  integers, are > o, and  X~o = i --  ~0 --  )'1, if  an integer, is < o. 
O f  course, (2.17.  i) is easy to deduce from the formula  for the B-function in terms 

o f  F-functions. 

(2 .z8)  We now assume tha t  each ~, is of  absolute value I, and  not equal  to I. 

There  is then a horizontal  positive Hermi t i an  structure ( , ) on L. Let  us choose one. 

One  can view ( , ) as a perfect pair ing between L and  the complex conjugate local 
system L.  As such, it induces a perfect pairing 

+0 : H'c(P - -  S,  L)  •  Utc( P - -  S , L )  ~ H ~ ( P  - -  S,  C) = C 

((2.3) , ( 2 . 6 . I ) ) .  The  vector space HI,(P --  S, L) is the complex conjugate of  
H t ~ ( P -  S, L), and  +0(u, ~) defines a non degenerate skew-Hermit ian form q on 

H I , ( P -  S, L). Ant icommuta t iv i ty  of  the cup product  shows that  

~b0(u , ~7)- = --  +0(v, ~), i.e. 

(2. t8 .  I)  +% v)-  = - +(v, u). 

- -  I - -  I 
Writ ing (u, v) : =  . +(u, v) = . +0(u, ~), wc have a Hermi t ian  form 

(2.X8.2) % v)- = (v,,). 

A scction co ofjy ~t(L) is said to bc of thefirst kind if v,(co) > -- i for each s e S. 

Those arc thc forms for which the intcgral fe-s co ̂  ~ is convcrgent. Thc intcgrand 

is defined as follows: if, locally, co~ = e~.[~ (i = i, 2, ~ a i-form, e~ a section of L), 

then cox n ms is the (I, I)-form (ex, es) [~x ̂  ~ .  
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We define H t ' ~  S, L) as the vector space of  forms of  the first kind in 
F ( P , j ~ a t ( L ) ) ,  and H ~  S, L) as the complex conjugate of  H I ' ~  S ,L) .  
It  can be viewed as the space of  antiholomorphic L-valued forms, whose complex 
conjugate is of  the first kind. Such forms also define cobomology classes. 

Proposition 
H~ --  S, L), 

(2.z9).  - -  I f  tol and ~ are each either in H I ' ~  L) 
one has, for the corresponding cohomologv classes [(~ and [to,], 

+ ( [ t o d ,  [to,]) = Jp_s   ^ 

or in 

Let us assume, for definiteness, that tot is in Ht '~ - S, L). Choose D,,  (u , ) ,es ,  
as in (2. I2), and let % be the characteristic function of  D, .  It follows from (2. i2) 
that the class of  tox in HI,(P --  S, L) is also the class of  the compactly supported 

current to1 --  Z d(% u,). Hcnce (2.3) 

= +o([ tod ,  = (to! - x u.)) ^ + ( [ t o d ,  [to,]) 

When we let the D~ shrink, the first term converges to fp_ s tox ̂  ~ l .  We want 

to show that all others tend to o. When the radius r of  D~ tends to zero, the size of  u~ ~z 
on 0 D ,  is 0(0(~')+~'(~ One has v,(u,) = v,( toa)+ I. The forms tox and to~ 
being of the first kind, the size is O(r~), with [~ > -- I. On  the other hand, the length 
of  0 D~ is O(r) ;  the boundary term is hence O(r  t~+x) and tends to zero. 

Proposition (2.2o).  ~ Under the assumption (2.x8) that I~,[ = I, ~, 4: i for  s e S ,  
the natural map 

HI,~ --  S, L ) |  H~ --  S, L) -)- Ht(P --  S, L) = Ht,(P --  S, L) 

is an isomorphism. The Hermitian form ( , ) is positive definite on H 1,~ negative definite on H ~ I 
and the decomposition is orthogonal. 

- -  I 

I f  to is in HI'~ --  S, L) (resp. H~ --  S, L)), the integrand . to n 
2 m  

is ~ o (resp. < o), and vanishes only for to = o. I f  to1 and to2 are one in H L~ and 
I 

the other in H ~ the integrand �9 to1 ̂  ~ ,  vanishes. This implies that Hi '~ H ~ t 
27Ct 

injects into Hi(P - -  S, L). It remains only to prove the surjectivity of H 1'~ @ H ~ t __~ I-P. 

We will check surjectivity by counting dimensions. Let t~, be the number  
between o and I such that =, = exp(2=i~,). From the definition s it follows that 

HI'~ - S, L) = F(P, n t (X~, .s ) (L)) .  By (2.8), deg nl(X~, .s) (L)  = --  2 + Y.~,. 

It is an integer > --  2 and hence 

( a .2o .x )  dim Hl '~ -- S, L) = deg ~*(X~,.s) (L) + i = --  I + X~,. 

19 



2 0  P. D E L I G N E  AND G. D. M O S T O W  

Let  us apply this to L. One  has to replace ~o by ~8----~-1 and  tz, by  x - -  ~q. 
One  gets 

( a . a o . 2 )  d im H~ --  S, L) -~ --  I -J- ] ~ ( I  - -  [,ts). 

The  sum of  the dimensions is --  2 § Z1 = N -- 2, as required (2 .3 .1 ) ,  

Corollary (2 .2x) .  - -  Notation being as above (a 8 - :  exp(2r~i~t,) with o <  ~z,< x), 

the signature of  the Hermitian form ( , ) on HI(P  --  S, L) is (Y~t 8 --  i ,  Z(I  --  Iz,) --  1). 

Remark (2.22) .  - -  (2.20) is a special case of  Hodge  theory for the cohomology 

of  a curve wi th  values in a polarized variat ion of  Hodge  structures: a local system, 

provided with an  horizontal  positive Hermi t i an  structure, can be viewed as a polarized 
variat ion of  type (o, o). The  artificial count ing a rgument  above enabled us to shortcut 

the general  theory,  for which the reader  may  consult S. Zucker [25]. 

(2 .23)  In  our  applications, the a, will be roots of  unity.  When this is the case, 
(2.2o) can also be deduced  from the Hodge  theory of  suitable coverings of  P. Let  X 

be an irreducible abelian covering of  P, wi th  covering group G, ramified only at S. 

If, for definiteness, we take P = p1 and  oo ~ S, this means that  the function field C(X) 

of  X is a subextension of  the extension C(P  1) ( ( z - -  j,~s-{0o}J of  C(z) = C(P1), 

for suitable d. 

Let  n denote the projection of  X onto P. The  Galois group G = Aut (X/P)  

acts (by t ransport  of  structure) on re. C (by abuse of  notat ion,  we also denote by C the 

constant  sheaf with fiber C), and at  a point z r  the representation of  G on 
(~. C), = H~ C) is a regular  representation of  G. For each character  Z of  G, 

let L x be the subsheaf of  n. C on which G acts by Z. One  has 

~ . C  = ~ L  x 
X 

and,  outside of  S, L x is a rank one local system. 

Let  g8 ~ G be the na tura l  generator  of  the inertial  ( =  decomposition) group 

at s : i f  x(t) ( o < t <  I) is a p a t h i n  X, such tha t  nx(t) in P stays n e a r s  in P - - S ,  

and  turn once a round  s, then  x(i)  = g8 x(o). Let  d 8 be the order of  gs. I f  t is a local 

coordinate centered at s, near  s, X is a sum of  copies of  the R iemann  surface of  t 1/~,. 
I f  z(g,) = I, L x is a local system at s. I f  x(gs) # i,  the fibre o f L  x at s i s z e r o ,  

and  the monodromy  of  L x a round  s is the ds-th root of  uni ty  z(g,). 

I f  we take X to be the largest covering such that  G is killed by d, G is the abelian 
group generated by the g,,  with the only relations 

ga, = I and  I-Ig 8 = I :  G = (Z/d)S/(Z/d) .  

I f  p : p1 and  c~ e S, X corresponds to the extension C(P1) ((z --  ~; ,Es-~o}; ~ ~ of  C(p1). 

This shows tha t  any  system of  roots of  uni ty  (0q), with II0q : I, is of  the form (z(gl))8 e s 

for suitable X and  Z- 
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Let H' (X,  13)x be the subspace of H ' (X,  13) on which G acts (by transport of  
structure) as X. The isomorphism 

H ' (X ;  13) = H'(P,  ~. 13) 

is compatible with the action of G, hence induces isomorphisms 

(2.23. x) H'(X, 13)x = H*(P, Lx). 

On P -- S, the sheafd)(Lx) is the direct factor (~. 0)x of=.  ~ consisting of the holo- 
morphic functions on X such that f ( g - t  x) = x(g) f (x) .  Similarly, f~l(Lx) = (~. f~l)x. 
Let j '  be the inclusion of X --  7:-1(S) in X. On P, one has again 

(2 .23.2)  J."(Lx) = (~.J:"~)x and 

(2 .23 .3)  j," f2'(Lx) = (T:,j:" n')x. 
Let us assume X(&) 4= I for s e S ,  so that H*(P,L• = H~(P -- S, L). Diffe- 

rential forms of the first kind on P --  S correspond then, by (2.23 . 3), to the differential 
forms of the first kind on X, on which G acts by X: 

HI'~ -- S, Ix) = I '(X, nl)x = Ht,~ 

and (2.2o) is the trace on HI(P --  S, L• = Hi(X,  C)x of the Hodge decomposition 
of Hi(X, 13). 

3. R e f ~ 1 7 6  of  Picard's  t heor em 

(3" �9 We now let the punctures s move, while the monodromy remains the same. 
The starting data will be: 

P : a complex projective line; 
N : an integer, > 3; 
S : a set with N elements, for instance [I, N] C N;  
0~ = (%),es : a family of complex numbers indexed by S, satisfying II~. = I, and 

such that none of the % is I. 
We will be mainly interested in the case ]~s[ = I. 

For any space X mapping to ps, we will write Px for the pull back on X of the 
universal punctured line 

P o = { ( P , m )  e p x p S l p C m ( S ) } .  

and 7: for the projection Px -+ X. Suppose a group H acts freely on X, with quotient Y, 
and that a lifting of the action to Px is given. We will then write Py for Px/H and 
fox the projection Py -~ Y. The H-equivariant fiber space Px over X is then the pull 
back of Py over Y. 

Let M c p s  be the space ofinject ive maps m : S  ~ P .  Then, 

P~ = {(p, m ) s P •  

2/ 
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is a topologically locally trivial fiber space above M. On each fiber P,, = P -- m(S), 
there is a rank one local system with monodromy 0~, i.e. with monodromy a, around m(s), 
for s ~ S. However, this local system not being unique up to unique isomorphism, 
one cannot conclude that on P,~ there is a unique rank one local system L such that 

(3. x. x) For m in M, the local system L,, induced by L on P,, has monodromy a. 
I f L  satisfies (3. x. i), all local systems satisfying (3. i .  I) are of the tbrm L | n" T, 

for T a rank one local system M. We will see in (3. I2), (3.13) that there is an L satis- 
fying (3. I. I). I f  N were 2, the analogous existence assertion would be false for ~ 4= + I. 

(3.2) Suppose L satisfies (3. I .  I ) ,  The projection 7: being topolosically locally 
trivial, the HI(P,,, L,,) ( =  Hie(P,,, L,,) by (2.6. x)) organize themselves into a local 
system R I ~ . L ( = R  17r IL) on M. 

We will be interested mainly in the corresponding flat projective space bundle 
B(~),~:-- PR tz~,L, the fiber space with fiber at m E M  the projective space 
PHX(Pm, L,,) : =  (HI(P,,, Lm) --  {o})/C', and with flat structure, that deduced 
from R t n .L .  For any vector space V and non-zero element v e V, we will denote 
by PV the projective space of one-dimensional subspaces of V and by Pv the image 
of v in PV. 

I f  L'  = L | ~" T is another local system satisfying (3. I. I), 

R 1 zr. L' = (R 1 7r. L) | T, 

and PR t ~. L' is canonically isomorphic to PR: zr. L, i.e. the flat projective bundle B(~),~ 
depends only on 0~. Another explanation of the same fact: the automorphisms of a 
local system Lr~ on Pm with monodromy 0~ act trivially on PHi(P,,, Lrn). Hence, 
although L,, is unique up to only a non unique isomorphism, pHI(p,,,  L,,) is defined 
up to unique isomorphism. 

(3.3) Locally on M, the existence of L satisfying (3. I . I )  poses no problem: if 
U is a contractible neighborhood of m ~ M, a local system Lm on P,, with monodromy 
extends uniquely to a local system L U on z:-l(U) and this extension has, fiber by fiber, 
monodromy 0c. The flat projective space bundle PRt~o L o on U is independent (up 
to unique isomorphism) of the choice of Lu; hence for variable U, they glue into a flat 
projective space bundle on the whole of M. This enables us to define B(0~),~ without 
having to assume the existence of a global L. 

For o ~ M, the flat structure of B(0~)~ defines an action of rrl(M, o) by projective 
transformations on the fibre B(a)0. A choice of L enables one to lift this projective 
representation of :~1(M, o) on PHI(Po, Lo) to a linear representation on HI(po, Lo). 

(3"4) Fix a system of complex numbers (~ts),~ s such that ~8 = exp(27ript~), 
and that Z~t, = 2. For each m ~ M, there is then up to a factor a unique non-zero 
section co of ~I(L,,) on P,,, meromorphic on P, and such that vo(co) > -- V, (s E S) 
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(2 . I2) .  Its cohomology class is not trivial (2.I3) .  This construction hence defines 
a section w~,(m) of the projection B(00,~ ~ M. 

The flat structure of the projective space bundle B(~) induces a structure of holo- 

morphic projective space bundle. With respect to it, we have: 

Lemma (3.5).  - -  The section w~, is holomorphic. 

Proof. --- The question is local on M. Fix x e M, and choose on the fibre PM 
a system of cycles Ci with coefficient in L v giving rise to a basis of Hx(P,~ , LV). They 
have support in some compact K and, for U a contractible neighborhood of m, small 

enough so that K •  L [ K x U  is isomorphic to the pull back of L [ K  by 
a unique isomorphism which is the identity above m. This enables us, for m' ~ U, 

to consider C, as a cycle with coefficients in L v on P,,, ; and each linear form (_ o n  d13 i 
the H~(P,,,, L,.,) (m' ~ U) is a horizontal linear form on R a ~. L. This provides a 
horizontal system of projective coordinates on P R  1 ~. L. 

Fix a coordinate z : P -+ P~, such that, for m' in a possibly smaller neighborhood U 
of m, z-t(oo) c P,,,, and let us trivialize L along z-l(oo) by a section e. We can take 

(cf. (2. ~2)) 
= II(z --  z(m'(s) ) ) -~ ' .dz .e ,  

and the projective coordinates of r are the 

re; 1-l(z --  z(m'(s))) -~, .dz .e .  

This is clearly holomorphic in m'. 

Remark (3.6).  - -  A more general method to get horizontal linear forms on R 1 r=. L 

is to start with a C~~ of (Pu, L) giving ?,., : P,,-% P,,,, L , , ~  q~, L,,,, 

and with LV-valued cycle or current C on P,,, and to take f ,  For instance, if ~,.(C)" 

C is a path from m(s) to m(t), together with a section e of L v on it, one defi>rms it with m' 

so that C(m') remains a path from m'(s) to m'(t). 

(3"7) The group G of automorphisms of P is isomorphic to PGL('2). Its action 
on P induces an action on M C  ps, on the space P,x, and on the flat projective 
bundle B(~),~ on M. The section co~, is preserved. The action on M is free. Let 
Q =  M/G. The fiber bundle P,~, the flat bundle B(~)M and w~, being equivariant, 
they descend to a fiber bundle Pq, a flat projective space bundle B(00q and a section w~ 
of B(~)q ~ Q .  

For P =-= P*, and for a, b, c distinct in S, let Mo C M be the space of m such that 

m(a) = o ,  m(b) = I, re(c) = o o .  One has PGL(2) •  0~>M. The quotient map 

hence induces an isomorphism M 0 ~ Q., and via this isomorphism, B(~)q and w, 

can be identified with the restriction of  B(0~),~ and w~, to M 0. 
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(3 .8)  Fix a base point 0 ~ Q.. The section w~, can then be viewed as a multi- 
valued map from Q to B(a)o. More precisely, let Q.be  the covering of Q corresponding 
to the kernel of  the monodromy action ~ of rq(Q. ,  0) on B(0~)o, i.e. let ( ~ b e  the quotient 
by Ker(p) of  the universal covering of  ( Q ,  0). The pull back of  B(00Q on Q. is 
Q •  B(~)o, and w~ becomes a ~xx(Q., o)-equivariant map ~ ,  from Q to B(a)o. 

Proposition (3.9).  - -  ~ : ( ~ B ( o ~ ) o  is dtale. 

Proof. - -  We may take P = p l  and replace Q by M0, as in (3.7). The problem 
is local. Take m ~ Mo, let e be a trivialization of L - -nea r  m----on R + near oo. We 

may take 

co = 1-I (z - -  m(s))-~'s.dz.e 
,nCs) * ~o 

(cf. (2.8)).  Choose cycles Ci as in (3.5-4).  Differentiating in m, one has 

with dMo co = Y, ~to din(s) 
, * a , b , ,  Z - -  m ( s ) . c o .  

The spaces Q. and B(~)o have the same dimension N --  3. The map ~ ,  is hence 
&ale at m if and only if d ( ~ )  is injective, i.e. if and only if for no tangent vector v 4= o 

at m is the family (0, re m), proportional to the family of integrals (re to),, i.e. if 

and only if for no v the cohomology class of 0, m is proportional to that of oz. This 
means that the cohomology class of  any non-trivial linear combination 

should be non-trivial. I f  b 8 4= o, ~ is of valuation exactly Vo(~) -- i at s, and hence 
4:o. I f  b , = o ,  the valuation is_> vs. This shows that B 4=o and that 

s~S s S 

so that the non vanishing of the class of ~ results from (2.14). 

(3.xO) We will now assume that [as[ = I and that the numbers ~t s defined 
by ~, = exp(2r~iEz,) , o <  Ez< I ,  satisfy Z~t, = 2. 

Locally on M, L admits a horizontal positive definite Hermitian form ( , ), unique 

up to a positive real factor (2. i8, 3.3).  It induces on R x re. L a horizontal Hermitian 
- -  I 

form ( , ) = . • (2.x8), of signature ( x , N - -  3) (2.2I) .  The vectors on which 
27~ 

( , ) is positive define a horizontal family of  complex balls B+(~)M C B(~)M, and the 
section w~ is in B+(~)M (2.2o) (for the meaning of the term " complex ball ", see w 5). 
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The  family B~(0c)M is equivariant,  hence descends to B+(0t)Q C B(0C)Q. The  ~tale 
map  of (3.9) is a map  

( 3 . , o . � 9  

equivariant with respect to the action of nl(Q.,  o) on B + (a)o. This action is a morphism 

( 3 . � 9  ~x(Q., o) -+ PU (H'(Po,  Lo), - I ) 2.--7 " 

Notation being as above, our main result is the 

Theorem (3. x�9 ). - -  Assume that 
(INT) The numbers ~, defined by % = exp(2~ ~z,), o < ~, < x, satisfy 

for  all s . t in S such that ~, fi- ~t < I, (I - -  ~t , --  ~t)-a is an integer. 

Then, the image F of (3- Io .2)  is a lattice in the projective unitary group 

( ' )  PU H*(Po, Lo), 2hi + --- P U ( , , N  3)- 

~ ,  = 2 and, 

The  theorem will be proved in section I I, where it is restated as theorem ( i I . 4 ) .  
The  strategy of the proof  is presented in the next paragraphs. 

In w 4, we define a partial compactification Q.,t of Q .  We also define a compac- 
tification Q.,,t, with Q.,~t 3 0 , t  3 Q. and O.,, t - - Q . , t  finite. In  w 8, we recall 
a construction of R. H. Fox to define the completion Q.,t (resp. Q.,,t) of ~.  over Q.,t 
(resp. Q.,,t). When the condition (INT) is satisfied, one can show that  each point y 
of Q.~t admits open neighborhoods U such that  the inverse image of U in Q. is a disjoint 
sum of finite coverings of U r3 Q .  The  completion Q.,t is then a normal  analytic 
space; it is the normal  ramified covering of Q.,t extending Q.. 

The  results ofw 6 allow us, in w 8, to extend ~ to a map  from Q.,t to B+(a)0. We 
will again write ~ for the extended map.  In w 9, we show that the condition I N T  
is t an tamount  to requiring this extended map to be ~tale in codimension one. Since 
the projection ~. , t  -+ Q.,t is locally (on Q.,t) finite to one, and Q.,t is a normal 
analytic space, it follows from w 6 that  the extended map ~ : ~.,t -+ B+(a)o is locally 
finite to one. By the purity of the branch locus theorem, if ~ ,  is dtale in codimension 
one, it is then dtale everywhere. Actually, we give two proofs of this fact in w IO, the 
second proof  not requiring the theorem on purity of branch locus. Additional work, 
relying on the compactness of Q , , t ,  shows that  ~ : Q.,t ~ B+(~)o is a topological 
covering map.  The  ball being simply connected, it is an isomorphism. In  other 
words, the inverse of the muhivalued map  w~ is a single valued map  w~ -1 : B+(~)0 -+ Q, t -  

The  homeomorphism ~ transforms the fibers of the projection Q.,t ~ Q . , t  
into the orbits of P. Those orbits are hence discrete, and P is a discrete subgroup of 
the Lie group P U ( x , N - - 3 )  of isometries of B~(0C)o. When  Q.,t = Q.,~t, the 
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quotient B+(~)0/r _~ 0 8  t is compact,  and I' is cocompact.  In the general case, a 
local analysis near the cusps p e Q.~t - O~t shows that it has finite covolume. 

For N = 3, the group PU(I ,  o) is trivial and the statement (3. i i) uninteresting. 
For N > / 4 ,  it is not at once clcar that ( i - - / z  i - [ z j ) - '  must be an integer for all 
i + j  under condition INT  (cf. (x4.2.  I)). It is easy to see however that condition INT  
implies that all ~t, are rational. We show this, even though it is not used in our proof. 

Lemma (3. x2). --- Assume that card S >1 4. 
to 2 and i f  for each of  the pairs of elements s ~e t 
rational, then all v, are rational. 

I f  positive real numbers (v,), e s sum up 
of  S for which v~ + v t <~ ,, v, + v, is 

We may and shall assume that S is the set of  integer from I to N, N/> 4, and 

that v l~< . . .~< v s . 

Case z . - -  v 1-{-v~1> I. For any distinct i , j < N  one can find k < N  distinct 

from i a n d j .  One has v k-k-v s>/ v l q - u  s/> I, hence 

vi + '~j ~ 2 - -  (vj, + vs) <~ I 

is rational. I f  three numbers a, b, c, are such that a + b, b + c and c + a are rational, 
they are rational. Applying this to the v~ (i < N), we find that they are rational. 
So is vN, because Y~v i = 2. 

Case 2. - -  v l + v  s~< I. In this case, for any i4= I, v ~ + v  i<~ v l + v  s~< I is 
rational. Summing, one concludes that ( N - -  2) v, + Zvi = ( N - -  2) v~ + 2 is 
rational: v~ is rational, and so are the vi (i + I). 

(3-X3) Next, we explain how local systems L with the prescribed monodromy 
in the fiber direction can be constructed globally above M on P•. Fix three distinct 
elements a, b, c e S. For each m in M, there is then a unique isomorphism P ~ pt  
mapping m(a), m(b), m(c) respectively to o, i, oo. Let z : P  M ~ p1 be the resulting 
map. When no ambiguity results, we will write z(x) for z(x, m). Let A : M  ~ R  + 
be a large enough continuous function. What  is needed is that [A(m), oo[ be disjoint 

from z(m(S)). For any U C M, let I U denote the locus of (x, m) E r~-l(U) such that 
z(x,m) e [A(m) ,oo[ .  I f  U C M  is contractible, then I UCPM is too. For U C M  
contractible, i lL  is a local system on ~x-I(U) with the prescribed monodromy 0~ (cf. (3.3)),  

then L U admits an horizontal section e U ~e o on I v. The pair (Lu, etj ) is unique 
up to unique isomorphism, hence there is no problem in glueing. One gets a global 
local system L on PM, provided with an horizontal section e on I~. 

Let M 0 = { m e M [ m ( a )  = o , m ( b )  = I,m(c) = o o }  as in (3.7). The product 
decomposition PGL(2) • M 0 -% M induces an isomorphism PGL(2) • P~, --% PM; and 

if one takes A(m) constant on the PGL(2) orbits, so that I M is the pullback of I~,, the 
system (L,s, e) is the pull back of its restriction to P~ .  
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(3.x4) We give two other descriptions of the same L. Fix numbers ~, such 
that ~ -~ exp(2~i~,). Let L~ be the subsheafof 0 (cf. w 2) consisting of those functions 

which are constant multiples of I-I ( z -  z(m(s))) ~,. This function is muhivalued 
s $ c  

but the ratio of two determinations is a constant, so that the definition of L~, makes 
sense. I f  ~' is another choice of ~, with a8 = exp(2~ri~), the multiplication by the 

univalued function I] ( z -  z(m(s))) ~';-~ is an isomorphism of L~ with L~,,. 
s ~ : c  

The principal determination of the muhivalued function ( z -  z(m(s))) ~ on I~ 
is defined as exp(~, l o g ( z -  z(m(s)))) with l arg log(z -- z(m(s)))] < ~i for z real and 
large enough. This provides a section of L~ on I M. One easily checks that L~, has 
the monodromy ~ on each fibre. 

An identical but more algebraic description of L~ is: the local system of horizontal 
sections of 0, provided with the connection V~ for which 

f - 1 V ~ f - -  df y, ~(dz - -  dz(m(s))) 
f ~,~ z -  z(m(s)) 

(3.x5) We close section 3 with some remarks about liftings of the projective 
representation 

0:  ~ ( Q " ~  H a ( P ~ 1 7 6  I ) - - 2 x i  + 

to a linear representation. 

As in (3-7) and (3-I3), fix three elements a, b, c in S and denote by M o the subset 
o f M w i t h  m(a) = o ,  m(b) = i and re(c) = o o .  Le tM(c)  denote the subset of  m e M  
with m(c) = o% and let B denote the stabilizer ofoo in PGL(2). One has M o-~ Q. and 

B • M 0 ~ M(c), PGL(2) • M o ~ M. 

As is well known, 

n~(PGL(2)) ---- =t(eu(2)) = =x(SU(2)/+ I) = Z/2 

= • C') = z ,  and 

so that 

(3. zS. i )  

(3.  5.2) 

~I(M) ~ r~l(Q, ) • Z/2, 

x z .  

Both those isomorphisms depend on the choices of a, b, c. 
For X any of Q., M(c) or M, each choice of a local system L on Px with fiberwise 

monodromy ~ leads to a lifting 

0': ~ ( X ,  o) -+ GL(H'(Po, Lo) ) 
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( -i) 
of 0. I f  L carries a unitary structure, 0' has values in U HI(Po, Lo), 2n--i- ~b . For 

instance, the L of (3. I2) carries a unique unitary structure for which e is of length one, 

M 0 ~ Q. provides a lifting 0 ' :  ~1(O~, o) ~ U (HI(Po, Lo) , --____~I +t a n d  its restriction to 
2rd " 

g 

The local system L itself provides a lifting 0' : rq(M, o) ~ U HX(Po, Lo), ~ which 

is trivial on the second factor of  the decomposition (3. I5. i). 

Let L(c) denote the local system on PMCcl which is given by the subsheaf of g) 
consisting of those functions which are constant multiples of 

I-I (z -- m(s)) ~',. 

Here, z is a fixed coordinate on P composed with P • M(c) ~ P and not as in (3. I2) and ( i )  
(3" I3). The local system L(c) provides a lifting 0' : rq(M(c)) ~ U HI(Po, Lo), 2---~ q~ 
of 0. 

Inasmuch as M(c) is the space of distinct ( N -  I)-uples of points in the plane 
(N = card S), ~x(M(c)) is by definition the colored braid group on (N --  I) strands. 
For any s, t e S - -  c, let "~a in ~l(M(c)) be a path in which t comes near s, makes a 
positive turn around s and comes back to its original position. The colored braid group 
is generated by such elements. The lifting 0' provided by L(c) has the virtue that 
each 0'(y,.t) is a pseudo-reflection (i.e. 0'('r,,~) --  I is of rank one)--cf.  (9. I), (I2.3).  

4" The compactified quotient space Q.** 

(4.0) As in section 3, we fix a complex projective line P, an integer N~> 3 and 
a finite set S with N elements. We further fix a family ~ = (~s),~s of real numbers 
with o <  ~8 < I and 

The complex numbers a, : =  exp(2ni~,) satisfy [a 8] = x, ots 4= I and Hot, = I. 

As in section 3, M C ps is the space of injective maps y : M ~ P. We denote 
by PGL(2) the group of automorphisms of P. 

These conventions will hold throughout this section as well as in sections 6 to x2. 
In this section, from (4.2) on, P will be the standard projective line P : =  p1 = C w{oo} 
and M the space of S-uples of distinct points of  the Riemann sphere. This is no loss 
of generality. 

(4. x ) The group PGL(2) operates diagonally on ps. We shall define a compacti- 
fication of the quotient space Q : =  PGL(2 ) \M.  The definition is taken from D. Mum- 
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ford's theory of  quotient varieties of reductive groups (cf. (4.6)).  The account here 

is self-contained. 
A point y e ps is called ~z-stable (resp. semi-stable) if and only if for all z e P, 

(4 .x .x )  Y. ~ , <  I (resp. < I). 
yCJ) = 

The set of all /z-stable points (resp. ~t-semi-stable points) is denoted 

Mst (resp. Msst) 

and we set M0=,p = M88 t --  M,t. 
For each partition {St,  S~} of S with Y~ ~t, = I (i = I, 2), the po i n t sy  in ps 

s e  Si 

for which y(Sx) ny(S~) = ~ and y constant on $1 or S~ are in Mo,~p. All points 
in M0u,p are obtained in this way, each from a unique partition. 

On Ms~ t we define a relation ~ via 

y - y ' ( ~ )  if and only if either 

a) y , y '  e Mot and y '  e P G L ( 2 ) y  or 
b) y , y '  e M0,~, and the partitions of  S corresponding to y and y '  coincide. 

It is clear that ~ is an equivalence relation. Set 

Q,s t  = M,,t/o~., Q , t  = M,t/ .~,  Q0u,p = M0,,,p/~ 

each with its quotient topology. The elements of Q0.,p are uniquely determined by 
their partitions. Thus Q0.,p is a finite set. 

Example (4.2).  - -  The cross-ratio c(za, z~, z3, z4) = zl - -  z3" zx - -  z4 of four 
Z 3 - -  Z 2 Z4 - -  Z 2 

points in P :-- p1 is defined and is a continuous map into pa as long as no three of Zl, 
z2, z3, z 4 arc equal. When two of the z~ are equal, the cross-ratio takes one of the 
values o, I, 0% the value depending only on the partition o f{  I, 2, B, 4} consisting of 

the subset { i , j }  with z i = zi and its complement. Suppose S = { I, 2, 3, 4} and 
I 

~, = -  for all s eS .  One can show that the cross-ratio map M~, t -~-Pt descends 
2 

to O, , t  and yields a homeomorphism onto the projective line. 

(4"3) Let M' be the space of y e ps  such that y(S) has at least three distinct 
points, and let Q '  = P G L ( 2 ) \ M '  be the corresponding quotient orbit space. Fix 
a, b, c in S, let U be the set of all y e M'  taking distinct values on a, b, c, and let U0 
be the s u b s e t o f a l l y ~ M  for which y(a)  = o , y ( b )  = i, y(c) = o o .  Then U is in M, 

stable under the action of  PGL(2),  and PGL(2) • Uo-~  U. Hence 

U0 ~ P G L ( 2 ) \ U  ~-+ Q'. 

As one varies a, b, c, the images of  U0 in Q'  cover Q'. Consequently O'  is a manifold. 

However,  this manifold is not Hausdorff  if card S > 3- For card S == 4 (cf. (4.2)) 
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one gets the projective line with o, I and ~ doubled. One infers from (4. I. I) that 
Mat C M'. The quotient Q.,t being open in Q'  is a manifold. The following Lemma 
implies that it is Hausdorff. 

Lemma ( 4  3). - -  Q sat is Hausdorff. 

Proof. - -  Let F denote the set of injective maps o f{  x, 2, 3, 4} into S. For any 
f � 9  let M/ denote the set of all y � 9  t such that c a r d ( y f ) - l ( z ) < 2  for all 
z � 9  and additionally, if y �9 c a rd f - l (S i )  = 2 for i = r, 2 where {Sx, S~} 
is the partition of  S corresponding to y. The additional condition guarantees that 

M t c~ Mr as well as M/c~ lkr is ~-saturated.  
For any f in F, define c t:  M / ~  P via the cross-ratio: 

ct(Y ) = c ( y f ( 1 ) , y f ( 2 ) , y f ( 3 ) , Y f ( 4 )  ) ; 

the function c t is constant on .~-equivalence classes of the ~ set M t. Inasmuch 
as c t is continuous on Mr, it descends to a continuous function on Mt/.~L To prow~ 
the lemma, it suffices to prove: 

(4-3- z) For any y ~ y '  mod ~ ,  there is an f �9 F such that y and y '  are in Mi, 

and el(y) 4= cr(y' ). 
One is free to rep lacey  a n d y '  b y y  1 andy', with y --- y l (~ ) ,  y '  -=y'~(~). 
To each y in Msa t we attach a partition of S as tbllows: for y �9 M,,ap , attach 

the partition defined in (4. I);  for y �9 Mat , attach the partition T = {C1, . . . ,  C,} 
such that y(s)  = y ( t )  if and only if s and t lie in the same coset of T. If  y -=yx(~),  
the same partition is attached to y and Yl. In the proof  of  (4.3.  x), we may and shall 
assume that i fy  or y '  is in M~uav, then it is constant on the cosets of its partition. 

We first treat the case that y and y '  are in M,~ap. Let {$1, 82} and {S'I, S~} be 
their corresponding partitions of  S. Since y ~r y '  mod .3, Si c~ S~ is not empty for 
i , j  � 9  2}; otherwise, if say S 1 ~ S~ = z, we would have S 1C S'1, S 1 # S'~ and 

~q = o 
s �9 S~ - S ,  

contradicting o < P-8 for each s � 9  Choose f so that c a r d f - l ( S  i t3 Sj) = I for 
each choice of  i , j  �9  I, 2}. Then for suitable choice o f f  we have 

y f ( I ) , y f ( 2 ) , y f ( 3 ) , Y f ( 4 )  = a, a, b, b, 

y '  f ( I ) , y '  f ( 2 ) , y '  f ( 3 ) , y '  f ( 4 )  = a', b', a', b', 

with a # b ,  a ' # b ' .  Hence 

ct(Y ) = r, ct(Y' ) = o. 

Suppose next that y � 9  and y ' � 9  Let T = { C }  be the partition 
of  S corresponding to y '  by (4.2). Each coset in the partition of S corresponding to y 

must meet at least two distinct cosets of T. We can thus choose an f �9 F so that 
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y f ( I ) , y f ( 2 ) , y f ( 3 ) , Y f ( 4 )  = a, a, b, b, 

y '  f ( I ) , y '  f ( 2 ) , y '  f ( 3 ) , y '  f (4 )  = a', b', c, d, 

with a 4 : b ,  a' 4:b' ,  and c4 :d .  It  follows at once that y and y '  are in Mr, ct(Y ) = i, 

cl (y ' )  4: i .  
It remains only to consider the case w h e r e y  a n d y '  are in Mst; let T and T '  be 

the corresponding partitions of  S. I f  T = T',  then for any f � 9  F, y e M t if and 
only if y '  �9 M t. Replac ingy '  by an element in its PGL(2)-orbit,  we can assume that 
there are three distinct cosets G~, C2, C3 o f T  with y(s) = y ' ( s )  for s c Cx u Cz u C s. 
I f  c~(y) = ct(y' ) for all f with y � 9  then clearly y = y ' .  One is thus reduced 
to the case where T 4 : T ' .  Then there i s a  C t � 9  and C ~ � 9  such that C ~ n C ~  

is not empty and C~4 :C '  x. 
Either C t - C '  t or C' t - C  t is not empty- -say  C ~ - - C  t 4 : ~ .  Choose C ~ � 9  

so that C ' t n C ~ 4 :  ~. Choose C ~ � 9  with C~4:C'~. Next choose C i � 9  so that 

C ~ n C  i4: ~. Then C ' ~ u C i 4 : S ;  otherwise, s incey '  a n d y  are in M,t , 

2 <  X t-,-,+ Z V.s<x + ~ .  
- -  *EC't s ~ C i  

Choose f : { 1 , 2 , 3 , 4 } ~ S  with 

f(x)  c l  n c l ,  f(2) �9 c l  

Any such f is injective, and 

y f ( i ) , y f ( 2 ) , y f ( 3 ) , y f ( , )  = a, b, c, 

y '  f ( I ) , y '  f ( '2) ,y '  f ( 3 ) , y '  f (4 )  = a', a', b', c' 

Hence ct(Y' ) = 1, %(y) 4: t. This completes the proof: 

f (3)  E C~ n C,, f (4)  r Ci u C,. 

with a 4 : b ,  c 4 : d  

with a' 4: b', a' 4: c'. 

Lemma (4.4. �9 - -  Fix a Riemannian metric on P. 

o r S  with Y~ ~ > i. For y �9 pS, define 
eET  

d(y)  = i n f  d iamy(T)  

and a(y)  = sup d(gy). 
g ~ PGL(2) 

Then there is a > o  such that a ( y ) > _ a  for  all y e M s ,  t. 

Let $" be the set of  all subsets T 

Proof. - -  The validity of  the lemma is independent of  the chosen metric. We 
will use the Fubini metric (for which P is isometric to the sphere of radius I) and prove 

the lemma with a ---- =/4- 
I f  y E Mousp corresponds to the partition {$1, S~} of S, with y constant on $1, 

let us take g to fixy(Sx) and the antipodal point u of P and to carry the complement 

of  the e-neighborhood ofy(S1) into the e-neighborhood of  u. Taking ~ -+ o, one gets 
d(y) = =. 

31 



3~ P .  D E L I G N E  A N D  G .  D .  M O S T O W  

For any r there is a compact  K C P G L ( 2 )  such that for g C K ,  g maps the 

complement of  the ~-neighborhood of some point u into the c-neighborhood of some 
point v. I f  y e M,t and if ~ is small enough, then, for all u, {s E S ] dist(y(s), u) > ~} 
is in W. This implies d(g~) -+o  for g -+oo in PGL(2).  The sup defining a(y) is 

hence attained. Fix y e M,t with a(y) = d(y).  We have to prove d(y) > a = ~/4. 
Suppose to the contrary that d(y) < a. Fix T 1 E g" with diamy(Tx) < a and 

t ~ T  1. For any T1, T~ in g', T l n T  2~e(0. I f S '  is the union of all T e $ "  with 
d iamy(T)  < a, y(S')  is hence contained in a half-sphere of radius r < 2a = ~/2 with 
center y(t). In particular, y(S')  is contained in an open halfsphere. Identify P with 
the Riemann sphere ~ w 0% with the unit disc the halfsphere, in such a way thaty(S ' )  

lies in D ----- {z ]l z[ < b}, b <  i. Take for g the multiplication by I + r  r  
For ~ small enough (relative to b), distances in D are increased by g. For any T e $" 
with d iamy(T)  < a, one hence has diamg~(T) > d i a m y ( T ) .  For T e$"  with 
d iamy(T)  > a, d iamy(T)  can decrease, but  not much for ~ small, so that d(gT) > d(y). 
This contradicts the choice o f y .  

Lemma (4 .4 .2) .  - -  Qs.t is compact. 

Fix a >  o as in (4.4-x),  and define M ' C  ps to be the set of y such that 

d iamy(T)  > a for each T C S with Y~ ~ >  x. The subset M'  of ps  is closed, 
sET 

hence compact. It is contained in M,, t and, by (4.4.  I), it maps onto Q , , t .  Compact- 

ness follows. 

(4-5) By contrast with Q, t  which is a manifold, the points of Qo.~p may be 

singular. 

Let d? denote the natural projection of M,8 t onto Q, , t .  Let {$1, S'1} be the 
partition corresponding to a point y.  ~ M0u,p. We shall describe a neighborhood 
o f + ( y . )  in Q~,t. We can assume that y.(s) = o  for all s ~ S  1 and y.(s) = o c  for 

all s e S[. Fix elements a e S 1 and b e S~, and define V as the set of all y ~ M s s  t 

such that y(a) = o, y(b) = oo and 

sup ly(s) l < inf ly(s) l. 
sES~ 8t~Si 

Then, ~(V) is an open neighborhood of  +(y.) in Q,, t  and is the quotient of  V by the 
equivalence relation on V induced by ~ .  The punctured neighborhood +(V) --  d/(y.) 
is the quotient of V --  d/-1 +(y.) by the stabilizer in PGL(~) of  the points o and oo: 

+ ( v )  - + (y . )  ( v  - + ( y . ) ) / c ' .  

Set $2 -:  Sx - -{a} ,  S~ ---- S [ -  (b}, m = card(S2), m' = eard(S,~) and consider 

the composite map 

: V - +  C s' x C s; = C "  x C"'  ~ C""'  

Y ~  ((Y(S))~es,, (Y(S-1)),es;) ~ (y(s) .y( t )- t )~es, . tss , .  
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The map ~ descends to an embedding of +(V) inro C "~', whose image is the inter- 
section of the cone over the Veronese embedding of P'~-~ x P " ' - '  in IW ""'-1 with 
the polydisc of radius x ([ x,.t [ < i). 

I f  m = i or m' = I, the Veronese embedding is an isomorphism with P " " - I  
As a consequence 

(4 .5 .1)  I f  card(S1) = 2 or card(S'l) = 2, the cusp point with partition {$1, S'1} 
is non singular. 

One can define an algebraic structure on Q.,~t by using as a chart at a point 

PGL(2)y  of Q~t the orbit space 

PGL(2) \{y '  ~ M~t [y'(i) +-y'(j)  i fy( i )  ~ey(j)} 

and at a cusp point with partition {Sa, S't} the Zariski-open subset of the Veronese cone 
of P " - ~  x P " ' - t  in C""' given by 

x,t =y(s)]y(t)  +- I, for all s e $1, t e S~. 

Example i. - -  S = { I , 2 , 3 , 4 , 5 } ,  ~ts=-2 for all s e S .  
5 

Here there are no cusp points: Q,st =-Q. , t -~  PGL(2) \M, t .  Each pair s, t 
in S defines the diagonal line L,. t :y(s) =-:y(t) in M,t and under the projection to Q , t ,  
one gets io lines. The map of M~t to (p1)z given by 

(Y~,Yz,Y3,Y4,Ys)  ~ (oo, o, i, c ( yx , y2 , y3 , y , )  -1, c ( y l , y , , y 3 , y ~ )  -1) 

(where c denotes cross-ratio) descends to a map p of Q.~t which is biregular except at 
L0, = p-l(o, o), L0~ ---- p-~(I, i), Lxz -= 0-1(oo, oo). Here, Q.,t is a blowup of p1 X p1. 

Each of the curves p-l(o, o), 0-1(x, I), 0-1(oo, oo) are exceptional, that is, each has self- 
intersection --  x. Inasmuch as the set of  lines {Lij, i + - j , i , j  ~ S }  are permuted 
transitively by permutation of coordinates in M,t , their images in Q.,t are also permuted 
transitively and thus each of the io lines is exceptional. The io lines of Q.st consist 
of  p-l(o, o), t~-l(I, I), i~-1(oo, oo), and the ~-lifts of the seven lines on p1 X pl: 

l ~ l ~ 
x =  I , y =  I , x = y  

oo  oo  

where x = c(ya,y2,y3,y4)  -1, y = c (y l , y2 ,y3 ,y4)  -1. 

Example 2. - -  S = { ~ , 2 , 3 , 4 , 5 } ,  ~-=  ' 3 ' 3 ' 3 '  " 

Here there are four points in Q0u,p corresponding to the partitions { Si, S~ } where 

$i~-={i, 5}, I < i <  4. Q~st is a non-singular manifold by (4.5.3).  This Q , , t  
can be obtained from the Q~,t of Example I by blowing down the four lines Li.5 
(I < i < 4). It can be obtained from p1 • p1 by blowing up the point (oo, ~ )  and 

then blowing down the lines x = oo and y = oo. The resulting space is P2. 

J3 
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(4 .6 )  We conclude this section by  relating our  O , , t  to Mumford ' s  when all 
the ~, are rational.  

Let  O(n) be  the line bundle  on P of  degree n, and let f ~  be  the canonical  line 

bundle  on P ;  i.e. f ~  ~ d~(-- 2). For  any line bundle  ~ we write S~ for the dual  

line bundle  and .~e| = ( s 1 7 4  n <  o. 

Let  D be the c o m m o n  denomina tor  for { i.t,, s c S }. O n  ps  define the line bundle  

sOS sES 

It admits a PGL(2)-action coming from the action on thc tangcnt bundlc f2~ ~ d)(2). 

Thc stablc and semi-stable points of ps defined in (4. I) arc thc samc as thosc dcfincd 

in Mumford's " Geomctric Invariant Thcory" for the action of PGL(2) on thc linear 

spacc of holomorphic sections of ~; O~.t is the underlying topological space of 

Mumford ' s  " quot ient  variety " for P G L ( 2 ) \ P  s [ i5].  

5. The c o m p l e x  bal l  

(5" � 9  Let  V be a complex  vector  space, and  ( , ) be  a Hermi t i an  form on V, of  

signature (I, d im V - -  I). The  complex balIB ~ in P (V)  : ~ { x-dimensional subspaces of  V} 
corresponding to ( , ) is the set of  lines in V which are spanned  by  a vector  v with (v, v) ~ o. 
The  form ( , ) is de termined,  up  to a positive real factor, by  B +. The  closure B+ of  B + 
in P (V)  is the set of  lines spanned  by  a non zero vector  v such that  (v, v ) ~  o. 

(5" 2)  The  hyperbolic angle 0 c R + be tween lines t l ,  t~ e B +, spanned  by  vectors vl, v2, 
is defined by  

(s .  2. � 9  I(v , v2) l = cosh(0)(vl ,  

I t  remains unchanged  when  ( , ) is replaced by  a positive multiple.  
The  angle O(tl,t2) is a R i e m a n n i a n  distance on B +. I t  is invariant  by  the action 

of  the  uni tary  group U(V)  on B + and  renders B + a Hermi t i an  symmetr ic  space. 

By cont inui ty  we extend the function 0(/a, - - )  to a funct ion 0(/1, - - )  from B+ to 
R + u {oo}: O(ta,t) = oo for t cOB +. 

(5 .3 )  Fix t ~ 0B ~. For v non zero in t, we define a " distance from t " function 
on B + by  

(5 .3 .  � 9  d~(t~) = [(v, vl)]/(vx, v~) '/z for ix c B +, any v 1 + o in t 1; 

( 5 . 3 . 2 )  d~(g) = o, d~(t') = 09 for t '  e 0 B  +, t '  4 / .  

The  function d, is cont inuous  and ~> o on B + - -  {t}. One  has dx,(tx) = [X] d,(tl) , 
and the family of  functions d~ (v ~ t  - - { o } )  is stable by  the stabilizer o f / i n  U ( V ) .  

(5-4)  O n  B +, we  will use the coarsest topology for which  the functions d, and 0(tx, ) 

are continuous.  A fundamenta l  system of  neighborhoods  of  t e B + (resp. o f  t e 0B+---on 
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which we choose v + o) consists of the V, (r > o) defined by V, = { (t x e B + I 0(g, ix) < r } 
(resp. V , = { t  x l e l = e  or t l s B  + and d~(tl)<r 

This topology is finer than the one induced by the topology o fP(V) .  It induces the 
usual topology on B +, and the discrete one on 0B +. It is respected by U(V).  

Proposition (5.5) .  - -  Fix g e OB + and let A be a discrete subgroup of the projective unitary 
group PU(V)  stabilizing g and respecting a " distance to t "function d~. I f  t has a neighborhood V 
(in the topology 5.4) such that VIA is compact, the volume of (V n B+)/A is finite. 

The subgroup o f P U  (V) respecting g and d o is the isomorphic image of the stabilizer H 
ofv in U(V).  It is an extension of the unitary group U(v• by the unipotent subgroup N 
of H consisting of the n e U(V) respecting the filtration V D v • ~ Cv D o and acting 
trivially on the successive quotients. The extension is split: H and N act transitively on 

each horocycle d,(,r = C and the stabilizer of t 1 is a lifting of U(vl/v). 
Fix an isotropic vector v' such that (v, v') = i, and let v I = v n t- 2v'. The 

line t a spanned by vl is in B + on the horocycle d o ---- x. Let V' be spanned by v and v', 
and let V"  be the orthogonal complement (~  vX/v). Any h e H fixing I x fixes each 

point of  V' ;  hence the stabilizer o f t  1 in H is U(V")  C U(V).  Let A C U(V')  C U(V) 
be the group of unitary transformations a(?`) : v ~-~ ?`-1 v, v' ~-~ ?`v' (?  ̀e R +) and fixing 

each point of V" .  It normalizes H: one has d, oa(X) = d ,  lxl-,,=?`d ~. Let 
A R = {a(?`) I ?  ̀< R}. The map g ~ g l  1 maps isomorphically A R H / U ( V ' ' )  = A RN 

onto {t~. e B  + ] d~(/,) < R}. The horocycles are closed in B~ (for the topology 5.4)- 
The compactness assumption implies that for R small enough, {t2[d~(t,) = R}/A is 
compact.  One has 

A\a(R)  H / U ( V " )  -%-{t~ I do(t ) = R} /A  

and A is hence cocompact  in H. It remains to evaluate the volume of 

AkAR H / U ( V  '') -%{t 2 e B I do(t,) < R ) / A  

for a volume element on A R H / U ( V " )  which is AH-invariant,  hence a multiple of the 
image o f d a . d h o n A  RH.  It is 

d?` 
f A\A.Hda'dh = fx <_R -~ f A\.(x)n dh' 

and f \o, ,dh dh =fa,Hd(a(?`)-I ha(?,)) 
t "  

Idet(Inta(?`) -~, LieH) l |  dh. 
d a  \u 

This leads us to evaluate [ det(Int  a(?`) -~, Lie H).  One checks that the character 
.Ix < R  

det(Int  a(?`) -a, Lie H) of X e R +" tends to zero for ?̀  ~ o, and the integral is hence 
finite. 

The computation above is of  course exactly the one used to prove that Siegel 
domains have finite volume ([2 b], Lemma 1.9). 
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6. Stable points 

(6 .1 )  Nota t ion  and assumptions (4.o)  are in force in this section as well as the 
assumption N >t 4- O u r  aim is to investigate the asymptot ic  behav iour  of  the section o~, 

of  B(:t)~, for y ~ M converging to a stable point  m ~ Mst. 

Fix m c Met. To  make a local s tudy of  o~, near  m, it will be convenient  to iden- 
tify P with p l ,  in such a way  that co r m(S). Let U be an open ne ighborhood  of  m 

in Mst , such that  coCy(S)  for y ~ U .  On  the inverse image Pu of  U in P :  (3 . I ) ,  
there is a rank one local system, trivialized at ao by a section e over  { ~ }  • U,  and  with 
monodromy  ~ on Pu for y ~ U n M. A model of  it is: the local system of  constant 

multiples of  i [  (z --y(s))~'~; the V, summing  up to an integer, there is no ramification 
s E S  

at oo. A trivialisation for large positive real z is p rovided  by the principal  de terminat ion  

of  l-I (z --y(s))~',; it extends by cont inui ty  to a trivialisation e at oo. We normalize 
s E S  

the Hermi t ian  form ( , ) on L so that  (e,e) = i. 

For  a general y ~ U, the m o n o d r o m y  o f  L u on Pv a round  p ~y(S)  is 

I1 0c, = exp(2r~i Y. V-~). The  stabili ty of  y ensures that  o < Y, ~ <  ~, so that 
yts) = p y{s) = p ~,(s) = p 

this local m o n o d r o m y  is never trivial. 

Fiber  by fiber, we take as section o of  ~l(E~., .s)  (L) 

= , ~ s  (z - - y ( s ) ) - " ' . e . d z .  O i l  

On U n M, it depends  holomorphical ly  ony .  The  assumption ofs tabi l i ty  o f y  amounts  
to saying that this form is of  the first kind. 

(6 .2 )  The  sheaf R lrc~ Lu, for n the projection Pu--> U, is no longer a local 
system if m r M. Its fiber at m is H~(P,,,, L,,) (-% H1(Pm, L~) by (2 .6 .  I)).  For each 
h ~ Hlc(P,,, L,,), there is hence a unique  germ h t' of  a section of  R 1 nl Lu inducing h 

on P,,. The  vector  space HIe(P,,, I_~) being finite dimensional ,  this provides us on U 

suitably small, with a map  

( 6 . 2 . x )  (constant sheaf  HIe(P,,, L,,)) ~ R 1 r~! L u. 

This map  is compat ib le  with the non degenerate  Hermi t i an  form ( , ), and  hence 
injective. Compat ib i l i ty  can be checked on the description given below. In parti-  
cular, each h ~ HIc(P~, L,,,) defines a horizontal  section h ~ of  R t r~, I.t: on U n M.  

We describe h ~, for h the class of  a L,,-valued compac t ly  suppor ted  C ~~ form "~, whose 
support  is conta ined  in a connected  compac t  K containing 0% and for U connected  and 

small enough for K to be disjoint f r omy(S)  for y ~ U. O n  K • U C Pu, L is uniquely 
isomorphic to pr~(L,,,), by an isomorphism which is the identi ty above m. It  hence make 
sense, in each fibre Py, to take the same form ~; it defines h~. 
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(6.3)  If  we apply this to %,, we get an horizontal section cI(%,)~ of R '  n~ L U 
on U r3 M. As (%., % , ) >  o (2.20), the same positivity holds for c1(%,) ~, and, 
projecting from R 1 ~I Lu to B(~), ,  we get a section Pcl(%,) t' of B(0t)+M. We will compare 

it with the holomorphic section w~, using fiber by fiber the metric (5.2). 

Proposition (6.4) .  - -  0(w~, Pcl(%,)~) tends to o f  or y E M tending to m. 

Proof. - -  This will result at once from the two statements 

(6.4.  I ) (c%, c%) -+ (%,, %,) for y ---~ m; 

(6 .4 .2 )  (%, c1(%,)~) -+ (%,, %,) for y -+ m. 

If  it made sense, we would like to say that % - +  %, in the L%norm, for y ~ m, 

but % and ~,, do not live in the same space, having different ramification. Let K R be 
the complement in p1 of discs of radius R around each point of m(S). One assumes R 
small enough for these discs to be disjoint; on a connected neighborhood U of y,  small 

enough for y(S) to stay disjoint from KR, one can compare % [K R and ~,,I KR : on 
Ks  x U, L ,.. pr~ L,,. There, one has a C~176 of % to ~,,. To prove (6.4.  I), 
it hence suffices to obtain a bound r uniform iny,  close to m, for the L2-norm of the 
restriction of c% to a disk D R of radius R around p e m(s), for any s e S, this bound 
being such that r  for R ~ o .  

We may assume R and U small enough so that y(s) CD2R if m(s) 4= p. This 
ensures 

I-I [ z - -  y(s) ]-~' < constant. II [z - -  y(s) I - ~ ,  
mCs) = 

and the required estimate follows from the following lemma. 

Lemma (6.5)- - -  Let D be a disc of  radius R, (ai) i e i be a family of points of D and (~i) i ~ r 
a family of  real numbers, such that o <  ~ <  i and Z ~ i <  I. Then, writing z = x + i y ,  
one has 

fD f[ z] 2(I 2~:R2('- xvi)-- 1-I l z - -  a,1-2~' dx dy < <~1 z1-2~z"' dx dy --  X~)" 

Proof. - -  We may and shall assume D centered at o. I f  the real numbers pi are 
I I 

such that I > - >  ~ and Z -  ---- I, Holder 's  inequality gives 
Pi Pi 

r l  I z - a,T d ,  dy <_ n I z - -  a,I dy] . 

One has 
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that the integral of I z -  ail-2"iPidxdy is bigger when taken on the disc DR(a/) of 

radius R and center a i than when taken on DR(o ) results from the fact that I z --  ai 1-2~i p~ 

is bigger on D R ( a i ) - - D a ( o  ) than on Da(o ) - - D R ( a i ) :  one has I z - - a i l < R  on 

DR(a , ) - -DR(o) ,  and I z - a i l > _  R on Da(o ) - D a ( a , ) .  
Using t h a t  Z I / P i  = I ,  w e  h a v e  

fDI] [ z - a,]-2'~i dx dy ~ l-I [2r=. 

with C = 2 . 1 - I ( I  - -  ~iPi) 1/pi. Taking the Pi 

i.e. Pi = ~ti -1 Y~ti, one gets the result. 

R 2 -- 2;H pi l 1/pi 
. . . .  ] 2r:. R ~(t- x~i). C -  t 

2 -- 2~t~A j 

such that the ~qp~ are all equal, 

(6 .6)  Proof of (6 .4 .2) .  - -  For each p e m(S), let Dp be a disc of radius R around p, 
up the solution on D ; -  Dp - - p  of tom = du and % the characteristic function of Dp. 
The current with compact support to m - - d Z % u p  can be used to compute cl(to,")~. 
One gets 

(%,el(tom)t,) : I Z 

For y ~ m ,  and R - + o  in such a way that the disc of radius 2R a r o u n d p  contains 
all y(s) for re(s) = p, the first integral converges to (to,., to,.), while the others each 

are O(R2R), B = i --,"(~p~q'81= This concludes the proof. 

(6 .7)  In the neighborhood of  a stable point y E Qst,  the projection of ~[st 
to Q.st has a section. Taking a pull-back by such a section, we get the following: 

Corollary (6.8) .  - -  For y e Qst,  there exists a neighborhood V of y in Qst  and a horizontal 
section b v 0fB(c~) on Q n V such that O(b~(y'), w~(y')) ~ o for y '  ~ y  (y '  ~ Q.). 

For y e Q,, the corollary just tells once more that the section w is continuous a ty .  

(6 .9)  A partition T of S is stable if for each C e T, ~(T)c : - ~ is < i. 
8~C [xs 

Define ~(T)c = exp(2~i~t(T)c ) = H ~,. For T stable, let MTC Mst be the space 
s ~ C  

of m a p s y  from S to P, such that y(s) = y ( t )  if and only i f s  and t are in the same coset 

of T. It is the inverse image in M,t of a subspace QT of Qst- The M x (resp. QT) 
for T stable form a partition of Mst (resp. Qst) and each M T (resp. QT) can be identified 
with the analogue M(T)  of M (resp. Q ( T )  of Q.) for T, Ix(T), and its closure with the 

analogue Mst(T ) (resp. Q, t (T))  of Mst (resp. Qst). 
Fix m , U , L  as in (6. i), with m � 9  T. On M T n U ,  the Hlc(Pu, Ly) form a 

local system. By (6.2.  I), this local system, which is trivial as U is small enough, extends 

as a trivial sublocal system of R 1 rq L U. The % (y e M T c~ U) define a non-zero 
holomorphic section of this local system on M r n U. The corresponding ray can be 
identified with the section W~,IT ) of B(a(T)) on M(T) .  
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On Q.~t, this gives us in a ne ighborhood V of  y e Q T :  

a) A horizontal  sub-ball-bundle of  B(~), which extends as a constant  horizontal  

bundle  on V. Its restriction to O T can be identified witll B(~(T)) on Q.(T).  

b) Via this identification,  the horizontal  section by of  (6.8) is the horizontal  section 

th rough  W~ITI(y ). 

Proposition (6. �9 - -  I f  ~t satisfies condition I N T  of (3- I x): o < ~t s < I, X~t, = 2 
and for all s +  t in S such that ~t~ + ~t < I, (I - ~t, --  ~tt)-I is an integer, then any 

subset C C S for which Y~ ~t~ < I has at most three elements, and for  any such subset with at least 
sGC 

two elements, (I --  ~] ~,)-x is an integer. 
sEC 

The  condi t ion I N T  implies tha t  ~t s + ~t is always > I/2 for s + t. Averaging 

over the pairs in C C S ,  we get tha t  for c a r d ( C ) ~ 2 ,  the mean  of  the ~ t s ( s~C)  

is > I/4. F rom Y~ [z~< I there results card (C) < 4. 
-- sEC 

The case card (C) = 2 is trivial by INT. Suppose C -{a, b, c}. The 

I I I 

relations x - ~to-- ~b-- , I -- [~#-- ~=--, I -- ~--~to=- sum up to 
nab n bc nat 

x -- ~ t , -  ~t b - ~t~ 2 + + i , hence + -~- > i. 
nbc nca nab nbc nca 

Wc now use the elementary fact that a triple of integers whose reciprocals have 

their sum strictly greater than I must be one of 

(2,2,  n) ( 2 , 3 , 3 ) ( 2 , 3 , 4 ) ( 2 , 3 , 5 ) .  

The  excesses of  the sums over I are respectively 

l/n, I/6, I / I2 ,  1/3o. 

I t  follows at once tha t  (I --  [z a --  [z b --  ~z~)-1 is an integer. 

Corollary (6. � 9  I f  ~ satisfies I N T  and T is a stable partition of S (cf. (6.9)) ,  the 

family ~t(T) defined by 

~z(T)c=  Z ~t, ( C ~ T )  
~c  

again satisfies INT.  

7. Seml-s table  po ints  

(7" �9  The  notat ion and  assumptions (4-o) are in force in this section; we assume 

also N>~ 4. Let  (S( I ) ,S(2) )  be a par t i t ion of  S, such tha t  Y~ ~t s := I. We want  
sES(i) 

to investigate the asymptot ic  behavior  on Q. of  c%, for y converging to a point  in Q0uap 
of type (S(I) ,  S(2)). 
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Fix a � 9  and b � 9  identify P with P = P ' ,  and let W be the space 
of y e p S  such that y(a) = o ,  y(b) = 0% and 

sup { ] y(s) [ l s e S( ~ ) } < inf { l y(s) l [ s �9 S( 2) } 

(as in section 4 where we wrote V instead of W). We put A(y)  -:  sup { ly(s) ] [ s �9 S(,)  }, 
B(y) = inf{ly(s)] I s �9 S(2) }, C(y) = A(y) /B(y) .  The quotient map rc : W -+ Qsst 
sends a po in ty  with C(y)  = o to the semistable point J of type (S(I), S(2)) and iden- 
tifies ( W -  x - ' ( J ) ) /G , ,  with a punctured neighborhood of J.  One has convergence 
of n(y)  to J if and only if C(y)  converges to o. 

On Pw, there is, up to a unique isomorphism, a unique rank one local system L, 
trivialized on the annulus A(y)  < ]z I < B(y) by a section e, and which for y �9 M, 
has fiberwise monodromy 0r (hence trivial monodromy around the annulus, as 

YI a~ = I). A model of it is the local system of constant multiples of 
s �9 S(0 

1-I ( z - - y ( s ) ) " , .  [I (x z ]~" 
, � 9  sc / , � 9  s ( , /  - " 

We normalize the Hermit ian form ( , ) on L by (e, e) = I. 

For any y � 9  fix R such that A ( y ) < R < B ( y ) ,  and let r  L-valued 
homology class represented by the cycle [z I = R in P~, positively oriented and pro- 
vided with e, the trivializing section of L. It can also be viewed as a class in HI~(Pu, Lu). 
For y = j ,  defined by j(S(1)) : o, j(S(2)) : 0% it is a generator of  this H~. The r 
provide a horizontal section of R 1 n! L. Since (cos, co j) = o, the line (co j) spanned 
by co s is in the boundary of the ball B+(0r and the functions d,o J of (5.3) provide a hori- 

zontal family of " distance to Pcoj " functions. We will use them to compare P~j  with 
the holomorphic section w~ of B(0~) +. 

Proposition ( 7 . 2 ) . -  For y variable in W , / f  C(y)  tends to o, the d,o~(w~,) tend to o. 

Proof. ~ Fiber by fiber w~ is the line spanned by the cohomology class of 

r YI ( z - -y ( s ) ) -* ' s .  l-I I -  .dz.e. 
s E S(1) s E S(2) 

The form ~v, as a function of y, is invariant by the 
suffices to treat the case where A(y)  ---> o, B(y) ---> oo. 

= I ( os, 

clearly tends to I: it is the absolute value of 

' 11 II 
2~i J i l l : ,  ,es(1) ~es(~) 

action of G,, on (W, L). It hence 
In  that case, the numerator  of 

- = - _  - - = , .  
27=2 Z 

40 



M O N O D R O M Y  OF H Y P E R G E O M E T R I C  FUNCTIONS 41 

We have to prove that (%, %) -+ oo. Indeed, 

(o , ,o~ , )"  ' f2 i i i z _ y ( s ) l _ ~ , , . s ~  z -~ ' . ]dz^d~ l  

f �89 BC~) dr 
~ 2 . - -  ~ 2 l log C(y)[ .  

a2A(~) r 

On Q ,  the proposition (7.2) has the following coroUary: 

Corollary (7.3).  - -  For each semi-stable point y of Q~u,p, there is on a neighborhood V 
of y a horizontal family of functions d on the balls B(e)r (y '  e V c~ Q.)---each a " distance to 
a point of 0B(0c)u, "function--such that d(w~(y')) ~ o for y' ~ y .  

8. Extending ~ by continuity 

Let X, Y be complex algebraic varieties which are separated as algebraic varieties, 
i.e. which are Hausdorff  in their complex topology. 

( 8 . � 9  One knows that any quasi-finite map f :  X --+ Y--i.e. a map whose fibers 

are finite--admits a faetorization X ~,~ ,X ~ Y, with j an open embedding, and f a 

finite map ( =  quasi-finite and proper). I f  X and Y are connected and normal, of  the 
same dimension, there is an unique such factorization for which 3{ is normal. One calls 
this X the normalization of Y in X. 

For more general spaces, and for some maps with totally disconnected but possibly 
infinite fibers, a simple topological generalization of this construction has been given 

by R. H. Fox [7]. 
The spaces X and Y are taken to be Hausdorff  and locally connected. A conti- 

nuous map f :  X -+ Y is called a spread if, for any x in X, one obtains a fundamental  
system of neighborhoods of x by taking, for each neighborhood V off (x) ,  the connected 
component o f f - l ( V )  containing x. A s p r e a d f i s  called complete if, for any y e Y, 

f - l ( y )  ~ proj lim n0 ( f - l (V) ) ,  

the projective limit being taken on the neighborhoods V of),. 
Fox proves that each spread f :  X --* Y can be embedded in a complete spread 

f :  .X ~ Y with the following universal property: any commutative diagram of solid 
arrows 

X . . . . . . . . . . .  ~ -  X' I x/1 (8.x.x) ~- ]//I t' 
v r  

Y ~ y '  

41 
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w i t h f '  a complete spread, can be completed as shown. For any y �9 Y, one has 

f - t ( y )  ~ proj lim =0(f-x(V)) ,  

the projective limit being taken on the neighborhoods V ofy.  It is clear from the uni- 
versal property that X is unique up to unique isomorphism, and functorial. We will 
call it the completion of X over Y. It contains X as a dense subspaee, and the topology 
of X is induced by that of X. The space X is locally connected. 

(8.2) We define a space X 

and closed subset. 
A map f :  X ~ Y is called 

which there exists a discrete set 

v 

V 

to be connected if it is non-empty and has no proper open 

a covering map if each y �9 Y has a neighborhood V for 
D (possibly empty), and a commutative diagram 

•  

If  Y is connected and X non-empty, such a map is onto. 
A map f :  X ~ Y is called a localhomeomorphism at x E X ifx has a neighborhood U 

which maps homeomorphically onto a neighborhood of f (x) .  The map f is called a 
local homeomorphism if this holds at all points x �9 X. 

Assume that X is a connected covering space of a connected locally simply connected 
open subset U of Y. The composed map X ~ U ~ Y  is then a spread. Assume 
further that eachy  in Y has a fundamental  system Y/'v of open neighborhoods such that 

(8 .2 . z )  for V in "//'v, V n U is connected; 

(8 .2 .2)  for V ' C V "  in r ~ x ( V ' n U ) - - ~ r q ( V " n U ) .  

A s f i s  a local homeomorphism, X is open in X. As X is a covering of U, one has 

further X = f - l ( U ) .  
Fix a base point 0 � 9  One knows that the functor ( g : U - + U )  ~ g - t ( 0 )  

is an equivalence of the category of coverings of U with that of discrete sets on which 
rq(U, o) acts. In particular, the connected components of U correspond to the orbits 
o f rq(U,  o) on g-1(o). For W open in U, connected and containing 0, the same applies 
to W and the restriction functor (g : U -§ U) ~ ( g - t ( W )  ~ W) from coverings of U to 
coverings of W corresponds to the functor: restriction of the action of ~1 (U, o) to rq(W, o). 
In particular, i f U  corresponds to rq(U, o) /K,  =o(g -1 W) is nl(W, o) \ rq(U,  o) /K.  

This applies to X. I f a  lifting ~'ofo is chosen in X, the map rq(U, 0) ~ f - l ( o )  : ~r~ o."d 
ident i f iesf- t (o)  with a suitable homogeneous space ~a(U, o)/K of nt(U, 0). 

Fix y ~Y, and a neighborhood V ~ ~r Let us assume at first that o E V. 

The decomposition group D v is then defined as the image of ~xx(V n U, 0) in nt(U, 0) and 

one has 
n o ( f - ' ( V  c~ U)) = Dv\~x(U, o) /K.  
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For V 'C  V in "fu, (8.2.  :) and (8 .2 .2)  imply that ~ :0( f - ' (V '  c~ U)) -% n 0 ( f - ' ( V  n U)) 
hence 

( 8 . 2 . 3 )  f - 1 ( y )  = D~\Tq(U, o ) /K .  

For a G ~:(U, o)[K, a.'~ is a lifting of o in the connected c o m p o n e n t f - l ( V ) o  of 
f - l ( V )  corresponding to the double coset Du ~K. I f  we use it as a base point, the fibre at 

0 of  the cove r ing f - l (V)o  of V n U is identified with D u a K / K  ---- Dv/D u n aK(~ -x. To 

the c o m p o n e n t f - t ( V ) o  there corresponds a point.~ i n f - a ( y ) .  The f - l ( V ) o  n f - i ( V ' ) ,  
for V'  a neighborhood of y, are the trace on X of a fundamental  system of neighborhood 
of .~ in X. 

For o not necessarily in V, one chooses 0' in V ~ U and a path p from 0 to o' in U. 
This path lifts as a path from ~' to some lifting ~" et o'. I t  defines an isomorphism 
of 7q(U, 0) with ~I(U, o') via which the above constructions, which make scnse for o', 
can be pushed back into ~q(U, o). For instance, the decomposition group D u C ~q(U, o) 
is defined as the image of  the decomposition group D u C ~1(U, 0'). It depends on the 

path p. One still has (8 .2 .3) .  

(8 .2 .4 )  A covering map f :  X -+ U is normal if  the nl(U, o) homogeneous space 
f - l ( o )  is isomorphic to a homogeneous spaces nl(U, o)/K, with K a normal subgroup. 
I f  f :  X ~ U is a normal covering map, the group 7q(U, 0) acts on X by deck-trans- 
formations, and this action extends to X by functoriality. We leave to the reader to 
check that, under the conditions (8.2.  i), (8 .2 .2) ,  one has 

I) 7~l(U , 0 ) \X --~ Y; 
2) for each y e Y, the stabilizer in ~I(U, o) of a p o i n t . ~ i n f - a ( y )  is the conjugate of the 

decomposition group D v determined by a path in U corresponding to .~ 

Remark. - -  Let K denote the kernel of  the action of rq(U,  o) on X. Then 7:t(U , o)/K 

acts properly discontinuously on X but  not necessarily on X. 

(8 .3)  Let w be a continuous function from X to a topological space B. We 
assume B regular, i.e. that any neighborhood of  any point contains a closed neighborhood. 
The function w then extends as a continuous function on X if and only if, for any ~ e Y~, 
w(x) has a limit for x ~ Y in X (convergence o fw  on the filter of  traces on X of neighbor- 

hoods of  ~ in X). 
In the situation (8.2) (with o e V for simplicity), one can treat w as a muhivalued 

function on U. I f  5: in f -  t (y) corresponds to the connected component  f - 1  (V) o o f f -  t (V), 

the restriction of w t o f - i ( V ) o  is a multivalued function Wo on V n U. That  w(x) has 
a limit for x ~ s means that there is b in B, and for each neighborhood W of b a neigh- 

borhood V' ofy ,  such that all determinations of Wo(U), for u ~ V' n U, are in W. 

Example ( 8 . 4 ) .  - -  I f  we take for Y the unit disk D C C, for U the punctured unit 
disk D ~ and for X the universal covering of  D', the completion of X over D is deduced 
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from X by adding one point above o : ]K = X u {o}. For ~, real > o, the function z x 
has a limit for z ~ o in X, but it has no limit for non real ~. with .~ .  > o. Similarly, 
z. log z has no limit. 

(8.5) With the assumptions (8 .2 . i )  and (8.2.2) on (Y, U), let ~ be the flat 
fiber space on U defined by an action 0 of nl(U, 0) on a regular topological space B, 
and let (X, 0) be the smallest covering of (U, 0) on which ~ becomes trivial: one has 

f - l ( o )  = ~I(U, o)/Ker(0). A continuous section w of g defines by pull-back to X an 
equivariant continuous map from X to B (and conversely). We write w for this map. 
When does it extend to X? Unravelling (8.3) , we find that ~ has a limit for x ~ 
abovey if and only if there is a horizontal section b of ~ over the trace on U of a neigh- 
borhood V E Yr v ofy, toward which w converges for y '  ~ y  (y '  ~ U), in the following 
sense. For Yt ~ V n U and W 1 a neighborhood of b(yl) in the fibre ~y, of  ~ at Yx, 
there is a neighborhood V' ofy such that for any y ,  ~ V' n U, and for W2 a neighborhood 
of b(y,) in the fiber of ~ aty2,  obtained by horizontal transport of W x along any path 
in V c~ U f romy t toy2, one has w(y2) ~ W2. This holds ifb has a system of horizontal 
neighborhoods W which are fiber arbitrarily small, such that w(yt) is in W fo ry ,  close 
enough to y. Of  course, b defines the limit of w. 

In the rest of section 8, the notation and assumptions (4.o) as well as the assumption N >t 4 
are in force. 

(8.6) As in (3.8), fix a base point o e Q ,  and let p : (Q., o) -+ (Q,  o) be the 
smallest covering of (Q,  o) on which the flat projective space bundle B(~)q becomes 
trivial. For Q c  YC Q~st and Y open in Q, , t ,  the composed map Q ~ Y  is a 

spread. We will write ~( for the completion of Q. over Y. The assumptions (8.2. x) 
and (8.2.2) are satisfied by (Y, Q) .  

It follows from (8.2.4) that 

(8 .6 .1)  ~ t (Q,  0) acts on Q, , , ,  

(8 .6 .2)  =I(Q, ~  = Q,,t" 

Proposition (8.7). - -  The map ~ ,  of (3.8) extends as a continuous map from Q8,t to 

the closed ball B(0~) +, provided with the topology (5.4). The inverse image of B(0~) + consists of 
the stable points. 

Proof. - -  We are in the situation envisioned in (8.5) , if we take for ~ the flat 

fiber space with fiber B(a) +, completing B(a) +. That  the extendability criterion of (8.6) 
applies is (6.8) f o r y  stable and (7-3) f o r y  semi-stable. Further, the limit occuring in 
criterion (8.5) lies in 0B(a) + if and only i fy  is in Qcusp. 

The extended map Q.8,t ~ B(~ + is also denoted ~ .  It is ~1(O, o)-equivariant. 
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(8.8) For T a stable parti t ion o f S  (cf. (6.9)), the system of the Q.T', for T '  finer 
than T, is topologically constant along Q.T, and the inverse image QT of Q.T in Q.,t 
is hence a covering of Q.T(~ Q.(T)). By (6.9) , on each connected component  Q.~ 
of Q.T, the flat ball bundle B(~(T)) + trivializes, and can be identified with a flat sub-ball 
bundle of the constant bundle B(0t) +, in such a way that  

( 8 , 8 .  � 9  = I 

From (3-9), we hence get: 

Proposition ( 8 . 9 ) . -  For any component ~)JT Of Q T ,  w~ I Q'T is an gtale map from ~)JT 
tO a sub-ball of B(~) +. 

9" C o d ; m e n s | o n  z e t a l e n e s s  

In  this section, the notat ion and assumptions (4.o) as well as the assumption 
N/> 4 are continued.  

Let T be a stable partit ion of S (cf. (6.9)), with card T = c a r d s  --  I; one 
coset o f T  has two elements and all others only one. Our  aim in this section is to describe 
the flat bundle B(0c)q over Q. (cf. (3.7)) and the holomorphic section w~ in the neighbor- 
hood of a point  in O TCQ, . t  (cf (6.9)) . 

(9 .1)  The  subspace Q.T of Q.,t, defined in (6.9) , is a locally closed purely one 
codimensional complex submanifold of the complex manifold Q.,t and Q. t3 Q.T is 
open in Q.st. The  monodromy around Q.T is the following conjugacy class in ~x(Q.). 

Let q~ : D ~ Q. u Q.T be an embedding of the unit  disc with ~(D) transversal 
to O r  and 9-1(Q.T) = {o}; ~ induces an embedding of D* : =  D -- {o} in Q .  The  
fundamental  group ~I(D ~ is canonically isomorphic to Z, generated by the loop 
[o, x] ~ D * : t  ~ zo.exp(2nit  ). The  decomposition group at q~(o) is the image of ~I(D ~ 
in rq(Q.) and the monodromy around QT is defined as the image of the positive generator 
of ~x(D~ Both are well defined up to conjugacy and independent  of ~. Let us fix a 
base point o in Q .  The  fundamental  group ~a(Q., o) acts on B(~)o. We will compute  
the action of the monodromy around Q.T. 

Let {sx, s,} be the two element coset o f T  and choose addit ional elements s3, s 4 ~ S. 
We assume that  P is the standard projective line p 1  and we choose in it two distinct 
points b, c :~ o. Let M 0 be the space of injective maps y : S - + P  with y(sl)  = o, 
y(s~) = b ,  y(s4) = c .  Let MOT be the space of maps S ~ P  with y(s) = y ( t )  if and 
only if s and t are in the same coset of T, and. y(sl) -----y(s2) = o, .y(s3) ---- b, y(s4) = r 

The  quotient  map  M6t ~ Q.st induces isomorphisms M0 ~ Q., Mow --% Q.T and 
M o U M o T ~ Q .  t3Q.T. We will work on M o U M o T  , rather than on Q. UQ.T. 
The  monodromy around Q.T is represented by the following loop in M0: it starts from a 
po in ty  0 with, for some r, yo(S~) in the disc D, of radius r a round o and they0(s~) (i ~: I, 2) 
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outside of this disc; it is given by the map from [o, z] to M0, t ~.Yt, withyt(si) constant 
for i4: 2, and yt(s~)=yo(Sz).exp(2rdt). 

Above this loop, one can construct on P~. a local system L with fiberwise mono- 
d r o m y ,  as follows: we fix a base point d o n  P, outside ofy0(S ) and of Dr, and take for L 
the local system trivialized on the constant section d and with the required monodromy. 
The action of monodromy on B(~)u ' = PHI(Py,, L) is deduced from the action of  
monodromy on HI(Pv., L). 

Proposition (9.2). - -  In a suitable basis of W(Pu,, L), the above action of the monodromy 
around O r  is given by a diagonal matrix diag(az as, z, . . . ,  i). 

Proof. - -  Set $1 -----{st, s2} and S~ = S - - S z .  Let Tt ,  T ~ be trees as in (2.5) 
with the vertices of Ti in Si ( i =  1,2) and let ~ : T  l u T = ~ P  be an embedding 
with [3 [ S =Y0. We may and shall assume that ~ [ T x is the straight line segment from 
y0(sz) = o toy0(s~) and that ~(T2) is outside of the disc D,. For each (open) edge a 
of T 1 or T~, we choose one of its orientations, and a non zero section g(a) of [3" L above 
it. As in (2.4), (2.5), each edge then defines a closed L-valued current g(a) [~(a), and 
the cohomology classes of those currents form a basis of HI(Pv,, L). It is the basis we 
will use. 

To transport our basis elements around the loop yt(o < t < x) horizontally, it 
suffices to deform [3 with [3t[ S =y~,  dragging along the t(a). We will keep [3tl T~ 
fixed and take for [3tiT 1 the family of straight line segments from y t ( s t )=  o to 

yt(s,) =yo(s,).exp(2=it).  Outside of  Dr C P, the fibers Pv and L remain constant, 
and the t(a).~t ] a for a an edge of T 2 are, as currents, independent of t. It follows 
that the monodromy is trivial on the t(a). ~ ] a for a an edge of T , .  Let a be the unique 
edge o f t  1. When [3t(a ) (o~< t~< I) has made a complete turn around o, t(a) is mul- 
tiplied by =1 as- Indeed, if pt(x) : [o, z] -+ ]P is a path from the base point d on P 
to a point d t on [3~(a), and if this path deforms with t so as to always avoid [3t(S), one 
can take t(a) to be obtained at d t by transporting along Pt the trivialising section e of L 
at d. As the following picture shows, Pz can be chosen to differ from P0 by a loop around 

y0(Sx) and yo(s=). Around this loop, L has monodromy az a2, and the claim follows. 

Yo (st) Yo (s2) d 
t = o :  ) I / . . . . .  

t small: 
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Remark (9.3). - -  In the computation (9.2), we have made use of the assumption 

~ l + E x ~ <  I only in the weaker form each4= I. In the case ~ I + V ~ >  I, t hemono-  

dromy when s 2 turns around s 1 would be given by the same formula, but the basis e in 

which it holds would have (ex, q) > o instead of (el, q) < o: it would be a pseudo- 
reflection with respect to a hyperplane not meeting the ball B(~) +. 

More precisely, one checks that if the section t(a) of L, for a the only edge of Ta, 
is chosen of length one: (t(a),t(a)) = x, then 

--i i._.(~___~1+i+~,+xl) 
(e l ,  el) = 2~i 2 -- x ~a - -  

We will not need this formula. 

Remark (9.4). - -  For later computations, it will be more convenient to work with 
the basis of the dual space H~(P --y0(S), L v) to HI(P --y0(S), L) given by a choice of 

non zero sections/ '(a) of [3* L v above the edges of T 1 or T~. The same arguments as 

in (9-2), show that  on such a basis of the dual space, monodromy around QT acts by 

diag((el ~)-1,  x , . . . ,  I). 

(9"5) Fix y e Q.T- We will describe the section w~, of B(~)q near y. A neigh- 

borhood ofy in O u QT and local coordinates are chosen as follows. First, one replaces 

Q U Q T  by M 0UMOT, as in (9.I) .  It  is convenient to chooseb andc ,  in the defi- 
nition of M0, so that oo Cy(S) and that the discs of radius i around the points iny(S) 

are disjoint. We do so. The chosen neighborhood U is then identified with the space 

of m e M 0 w MoT such that [m(s) --y(s)[  < x. The chosen coordinates are the 

m(s) --y(s) (s oe sl,sa, s4). I f  S' : :  S -- {sl, s~, s3, s4} , this system of coordinates 
identifies U with D x D  s', and U C~Mo with D ' •  s'. 

We choose L as in (9. I), using a base point d on P at distance > I f romy(S)- - for  

instance d a large positive real number. In U c~ M0, we choose a base point too---for 
I 

instance with mo(s2) : - and mo(s ) = y ( s )  for s ~e s~. We view w~, as a multivalued 
2 

map from U n M o to B(~),,~ = pHI(p  -- m0(S), L), and on HI(p  -- m0(S), L) we 
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use the coordinates provided by a basis (9.4) of  the dual  space. The  muhiva lued  map  w~ 

then lifts to the mul t iva lued map  wi th  values in C s -~  having as coordinates (up to 

multiplicative constants) 

f:C,~) ~'(z ~' II  (z --  m(s))-~ ' .dz  - . �9 

as first coordinate and  as the other  coordinates the integrals 

f [ I (z  - m(s)) -~', dz 

taken along a pa th  remaining  outside the disc [z I < I from one ra(s) to another  

(s 4= sl, s2). W h e n  m(s2) turns once a round  re(s1), the first coordinate  gets mult ipl ied by 

(~1 ~2)-t = exp(2rri(x - ~ t -  ~ ) )  while the others regain their  value (9.4) .  This 

allows us to write the first coordinate  as ( m ( s z ) -  m(sx))a-~'a-~.I(m), with I(m) an 

ord inary  function on U c~ M0. When  m tends to mx e MoT, I(m) tends to the limit 

( --  re(s)) -~,.  y~ z-~*( z _ i ) -~ ,  II dz, 
s : ~  s l ,  S 2 

which is non zero (2. I7.  I), hence I (m) extends as a holomorphic  function on U, invertible 

on U n MoT. The  other  coordinates extend as holomorphic  functions on U, having 

as restriction to U c~ MOT integrals 

f z-~'a -~',. I-I (z --  m(s))-~',.dz. 
S ~ $1, 85 

By (3.9) applied to ~r, these functions on U ~ MoT are the projective coordinates of  an 

etale map  from U n MOT to the projective [(N -- ~) --  3]-space (cf. (8.9)) .  

(9 .6)  In  suitable local coordinates,  the mul t iva lued map  w~ from U n M 0 

to B ( . ) ~  has the form 

(z0, z) ~ (z~ -~1- ~" I(zo, z)), J (z  0, z) ;  

here, (Zo, z) are local coordinates on U coming from the product  decomposit ion above, 

U ~ D • D", U n Mo ~ D" • D"; the local coordinates on the image of  U in B(00,,~ are 

selected on an open set V with V ~ D • D n and (o} • D ~ lying in a hyperplane;  and 

finally, I : D X D n ~ C and  J : D • D ~ --* D ~ are holomorphic  maps, with I(o, z) + o 

and J(o,  z) : D ~ -+ D ~ etale. 

At a point  of  {o} x D ~ C D X D ~, the holomorphic  functions Zo.I(z0, z) 1/I1-~-~21 
and  J(zo, z)i (I < i < n) form a system of  coordinates.  In those coordinates, the 

muhiva lued  map  w~, is 

(z0, z, ,  . . . ,  z,) ~ (z0 ~ - ~ - ~ ,  z~, . . . ,  z,). 

Suppose I - -  Vj --  ~2 is rat ional ,  set I - -  ~z 1 -  ~2 ----t/k, in reduced terms. 

I f  D is another  copy of  the disc, with coordinate  u, mapping  to D by u ~ u  ~, 
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the pull back to D • D" of  the multivalued map above is the holomorphic map 
(u, z l ,  . . . ,  z,) ~-. (u t, z l ,  . . . ,  z,). This map is etale in a neighborhood of 

{o}x D"c i5 xD" 

if and only if t =  I, i.e. if and only if ( I - - ~ a - - ~ 2 )  -1 is an integer. 

(9.7) Let Y be a complex analytic manifold, $" a family of disjoint closed complex 

analytic submanifolds purely of complex codimension I, Z = H { H ;  H eW}, and 
~c:~" ~ N a positive integer valued function. 

A continuous map d? �9 R ~ Y is called a branched cover with branch locus Z oforder  
if and only if: 

I. ~b induces a covering map from d~-l(Y -- Z) to Y -- Z. 
2. For any H e $ ' ,  if we put k : = K ( H ) ,  any y e l l  a d m i t s a n e i g h b o r h o o d V  

in Y such that the restriction of ~b to any connected component of d?-l(V) is topologically 
equivalent to the map 

D" ~ D" : ( z l ,  . . . ,  z , )  ~ ( ~ ,  z2,  . . . ,  z , ) .  

A branched cover ~b : R -+ Y has a unique complex analytic manifold structure such 
that + is holomorphic. 

(9 .7 .x)  Let + : R ~ Y  be a branched cover with branch locus Z. 
from the definitions that + is the completion of ~b-l(Y -- Z) -+ Y over Y. 
given any commutative diagram 

0., , 
~ / 

Y - - Z  

It follows 
Moreover, 

with p and + spreads, then there is a diagram 

Y 

with p and d~ the completions of the spreads above, which is also commutative by the 
universal property of completions (8. i .  i). 

(9.8) Let Q be an open set in a locally connected space Y. Let p : Q - +  Q be 
a spread and denote by p also the completion Y --~ Y of p. Then for any open set U 
in Y, the restriction of p to a connected component p-l(U)C of p- l (U)  is the completion 
of the spread p-I(U)C n p- I (U ra Q,) -+ U n Q.  

49 
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(9 .9)  We now assume that  the l~0 are rational (cf. (2. I2)). Let ~ denote the 
family of stable partitions T of S such that  card T = card S --  I. For T in ~x, and { s, t } 
the coset of T with two elements, let k T be the denominator  of x -- iz,--  ~q. Set 

Q x = Q u  II 
TES"I 

(~l = completion of ~ over Qx, 

':(Q.T) = kr for each T 

Proposition (9" �9 - -  The map Qa ~ Q1 is a branched cover with b,anch locus I.J Q T  

of  order v.. 

By (9.8), the problem is local a round each y EQ, T. The claim then 
results from (9.2) and the fact that  the order in the projective unitary group of 
diag(a0 at, I, . . . ,  I) is the denominator  of x -- ~ t , -  ~z t. 

Proposition (9" �9 ). ~ The map ~ : Q.1 -+ B+(a)o is holomorphic. 

For ~ ,  is holomorphic  on Q. and is continuous on Q.1 by Proposition (8.7). Since 
Q a -  Q. has C-codimension I, the assertion follows from the theorem on removable 
singularities. 

Proposition ( 9 - � 9  - -  Assume that 

I N T  o <  ~t,< I, Z ~ 0 = 2  a n d f o r a l l  s, t e S  
( i - -  ~t, - -  ~t,)- 1 is an integer. 

Then, ~ : Q.1 ~ B+(a)o is etale. 

This follows from the local description (9.6). 

distinct and with [~, + ~t < I, 

�9 o .  P r o o f  o f  d i s c r e t e n e s s  

In this section, the notat ion and assumptions (4.0) as well as the assumption 
N >/4 are continued. 

(xo. �9  We will give two proofs that  when condition I N T  is satisfied, the image 1-' 
of ~ (Q . ,  0) in PU(I ,  N --  2) is discrete. 

The  first is shorter, but relies on a detailed local analysis of analytic varieties and 
holds only when Q.st = Q.8,t. The  second is longer but  more e lementa ry- -and  
eventually more powerful. 

(xo.2)  First proof. We follow the strategy explained in (2. x3). The  key point in 
proving that  the projection Q.,t ~ O-..,t is locally (on Q.,t) finite-to-one is the following 
lemma.  
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Lemma (xo.3) .  - -  Let DI,  D2 and D 3 be three distinct lines in C2 passing through o, and 

nx, n2, n 3integers> xsuchthat I + I -t- I__> . - -  - -  I Fix a base point b ~ C ~ --  (D1 u D 2 u D3) , 
n I n 2  n 3  

and consider the coverings of  (C ~ --  (Dx u Da u Ds) , b), with ramification index along D 
dividing n~ (i ~ i, 2, 3): the monodroray permutation of  the sheets, when turning around Di, 
is of  order dividing n~. Then the universal such covering is a finite covering. 

Proof. - -  There exists a spherical triangle A with angles ~ 7: - - , - - a n d - - .  L e t W b e  
hi. n2 ns 

the Coxeter group generated by the reflections along its edges. The w A (w ~ W) 

form a tessellation of the sphere, and hence 

, ) ,  
IWI = area(S*)/area(A) = 4 + - -  + - -  --  I . 

n2 n3 

Let W + be the subgroup of  index two in W consisting of  the orientation preserving 
elements. I f  we identify the sphere with the Riemann sphere metrized by its Fubini 

metric, W + becomes a finite subgroup of PU(2),  of  order 

(~1 I I ) -- 1 d = 2  + - - +  - 
n2 n3 

The quotient Px/W+ is of genus o and hence is a projective line. Fix an isomor- 
phism Pa/W+ ~ p1 and let f :  p1 _+ p1/w+ ~ p1 be the quotient map. The pull-back 
b y f o f t h e  line bundle 0 ( - -  x) on p1 is of  degree the negative of  d = d e g ( f )  • [W + [. 
Fix an isomorphism O(--  i) |  f *  O( - I). The group W + acts naturally on 
(P l , f "  0 ( - -  I)) ~ (p1, 0 ( - - I ) |  Let H be the group of all automorphisms (h, r 
o f ( P  1, 0 ( - -  i)) with (h, r174 ~ W +. It is a central extension o f W  + by Va, the group of  
roots of unity of order dividing d. As a space, the line bundle 0 ( - -  I), minus the o section, 
is C 2 - { o } ,  the bundle map being the natural projection C * - { o } - +  pl.  The 
action of  H on C 2 - - { o }  is induced by a linear action on C2: the contragredient of  its 
action on H~ 1, 0( i ) ) .  The quotient map of  the space (p1, ~ ( _  i)) to its ~t a orbits 

may be identified with a d-th power map of (p1, 0 ( - -  I)) to (p1, 0 ( - -  x)| and the 
quotient map g : C 2 -- o to its H orbits is the composite of the d-th power map to the 
total space o f f *  ~ ( - -  i) minus its zero section, followed by the quotient map to W + 
orbits. Thus the quotient maps by H and W + give rise to a commutative diagram 

C 2 ( ~ C 2 - { 0 }  > p t  

C 2 ~ ~ C 2 - { o }  , p l  
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The stability groups in W + of the vertices Pl,  P~, P3, of  the original spherical triangle 
are cyclic of order nl, n~, n3, and the points in the orbits ofpx, p~, Ps are the only points 
with a non trivial stabilizer (this results from the fact that the stabilizer in W of any 

point of  A is generated by the reflections along the edges passing through the point 
([4] V (3.3) prop. I), or simply from the fact that A is a fundamental  domain for W ([2o])). 
Let d~ -----f(p~) and Di C C 2 be the corresponding line. One easily checks that g ramifies 

only along D1, D~, D 3 and that at each point above a point of  D~ - {o}, the ramification 
index is exactly n~. I f  X is a covering of C ~' --  (Dx w D~ ~ Da) as in ( Io .3)  , its pull- 
back by g can hence be extended to unbranched covering of C ~ -- {o}. As C ~ --  {o} 
is simply connected, each connected component  of  this covering of C ~ - - { o }  is trivial. 

This implies that the universal covering of type (IO.3) is 

g-X(C ~ -- (D~ w Da w D3)) ~ C ~ -- (D1 ~ D~ w Da). 

It  is finite. 

Remark (xo.4).  - -  (i) The proof  showed that the universal covering (xo.3) is of 

order 2 + -- -t- - i It is a Galois covering, with group a central exten- 
n 2 n 3 

sion of  W + by a cyclic group of order [W § 1. 
I I I 

(ii) If  ~x-6 ~ =  I - - - - ,  ~ +  ~ s =  I - - - -  and ~ 3 + ~ 1 =  I - - - - ,  one has 
?l 8 n 1 n~ 

. . . . . .  I . The condition - - - 6 - - 6 - >  x amounts 
i - ~1 ~ ~3 ~ + n~ n3 nl n2 n3 

to ~ x - 6 ~ 2 - 6  ~3 < x, and when it holds (I - - ~ z ~ - - [ z ~ -  ~a)-l---- ]W +[ is an integer, 

as observed in (6. io). 
(iii) The fundamental group of C 2 -  (D 1 w D2 u D3) is generated by three 

elements Y1, Ya, Y3 (u conjugate to a small positive loop around Di) with relations those 
expressing that Yx Y~ ~'a (conjugate to a small loop around o, on a general line D through o) 

is central. To get H,  one imposes the additional relations y~; = I. 
(iv) In the commutative diagram 

g-a (C2- -  (D1 u D ,  wD3))  c , C ~- 

C ~ -  (DIuD2uD3) c , C2 

C 2, at the upper right corner, is the completion of g - t ( C 2 - - ( D  1 w D 2 w D3) ) 

over C~--at points of  C ~ -  {o} by (9.7.  I) and at o by direct verification. Such a 
fact is generally true for a finite morphism g of normal analytic spaces. The completion 
of  g-l(C~ -- (D 1 w D~ w D3)) over C 2 thus acquires a structure of  a normal analytic 
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space--indeed of a non-singular analytic manifold; this structure is in fact the unique one 
for which the projection to (I 2 is analytic. 

Remark (xo.5).  - -  Let 

let nl(j) , n~(j), na(j) satisfy 
integer > i. We define 

J = J ' n J " n J ' "  be a finite index set. For j e J ' ,  
I I I 

nx(j----) + ~ + n 3 ~  > I ; for j e J " ,  let n(j)  be any 

X ( j )  = ( I  ~ -  D ~ - - D ~ - - D  3 C ( I  ~ f o r j e J ' ,  

C - {o} c C 2 for j e J " ,  

C f o r j  e J " ' .  

The product X of the X ( j )  is the complement of a divisor in Y : =  (C2) a' • C a''u J". 
E ' The covering X of X, with ramification index along prft(D~) dividing n~(j), ( j  J ), 

with ramification index along prfl({o}) dividing n(j) ( j  e J " ) ,  and universal with 
respect to those properties, is the product of the corresponding coverings of each X( j ) .  
Hence X is a finite covering of X. The completion ~ of X over Y is similarly a product. 
By (Io. 4) (iv), Y has a unique structure of a normal (in fact non-singular) analytic space 
for which the map to Y is analytic. I f  X1 is a covering space of X and a quotient of X, 
then Xx = X/G with G a finite group, and the completion Y1 of X1 over Y is Y/G. It 
inherits the structure of a normal analytic space from Y. 

Similar remarks apply with X replaced by the trace on X of a ball around o in 
(C2) J' • CJ"U J'" 

Lemma (xo. 6 ) .  - -  I f  condition (INT) is satisfied, Q ,t admits a structure of normal analytic 
space, such that each Yo ~ Q , t  has an open neighborhood U whose inverse image in (~,t  is a dis- 
joint sum of finite ramified coverings of U. 

It  suffices to show that each Y0 e Q.,t has an open neighborhood U whose inverse 
image in Q.,t is a disjoint sum of finite (topological) coverings of U n Q which, in 
suitable local coordinates aty0,  are of the type considered in (xo.5). This we proceed 
to show, using the control over ramification in codimension i provided by w 9. 

Fix Y0 e Q.,t, and let T be the corresponding stable partition of S. Fix a, b, c in 
distinct cosets. One can identify a neighborhood of y0 in Q.,t with a subspace m p S  
whose elements take prescribed values on a, b, c. We arrange these values so that 
oo Cy0(S). Neary0,  we then have the following system of local coordinates, depending 

on the choice of a representative d(C) in each coset C: 

a) the y(d(C)) --y0(d(C)),  for C not the coset of a, b or c; 
b) for each coset C, the y(e) - -y(d(C))  with e ~ C -- {d(C)}. 

In  terms of these coordinates, the condition fo ry  n e a r y  0 to be in Q is: a) for C a 
coset with three elements, (y(e) --y(d(C)))esc_{a(c)) e (]2 is not on any of the lines 
z x = o ,  z~=:o, z l = z 2 ;  b) for C a coset with two elements, y (e ) - - y (d (C) )4 :  o 
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(e ~ C, e 4: d(C)). We recall that  C has at most three elements (6. io .  i), and that  i f C  
has three elements x, y, z, the sum of the reciprocal of the integers (i --  i z x -  tzy) -~, 
( I - - ~ u - - ~ , ) - a ,  ( I - - V t , - - F x )  - t  is > 1 (6.1o).  

For U a suitable open neighborhood o f y  in O , t  , we can hence apply (lO.5) to 
the covering of U n Q. induced by Q .  We find that  this covering breaks up into a 
disjoint sum of finite covering of the type required. 

Lemma ( to .7 ) .  - -  I f  condition I N T  is satisfied, the map w~: Q.,t ~ B+(~ is etale. 

The  map  ~ ,  is holomorphic on Q. by (3-5) and continuous on Q.,t by (8.7). It is 
hence holomorphic  on Q.0t. By (6.9) , it has an injective differential on the strata of a 
suitable analytic stratifcation. The  fibers of ~ ,  hence have no component  of dimen- 
sion > o and ~ ,  is locally finite-to-one. 

We know from w 9 that  ~ is etale outside of a closed analytic subset ot  Q.,t of 
complex codimension > 2. By the puri ty of the branch locus theorem (the fact that  the 
branch locus is always purely of codimension one), it t011ows that  ~ is etale everywhere. 

(zo .8)  Let us now assume, in addit ion to INT,  that  Q , t  = Q.m,  i.e. that  for 
no S(1)C S is ~ tz,--- x. Choose a metric on Q.,t- We provide Q.,t with the 

~ 

metric for which d(x,y) is the inf imum of the lengths of patks from x toy,  the length being 
measured by its projection into O0t.  What  we need is a metric invariant by the action 
of ~x(Q,  0) ; any such metric will do. The  space Q.,t is locally compact ,  and the pro- 
jection to Q.,t is open. Since Q.,t is assumed to be compact ,  there is a compact  K C Q.,t 
mapping  onto Q.0t. Since ~ ,  is etale, there are numbers  r, R > o such that  for k e K, 
the restriction o f ~ ,  to the ball B,(k) of radius r around k in Q.,t is an embedding,  and 

( , 0 . 8 .  x) ~(B,(k))  ~ Ba(~,(k)). 

The  ~1(O,  0) translates of K cover Q.,t .  The  map  ~ ,  being equivariant,  and the 
action on the ball B+(~)o being via isometrics, (1o.8.1)  holds for any k ~ Q.,t.  The  
map  ~ ,  is hence a covering map.  The  ball being simply connected 

is an isomorphism. This concludes the proof  of (3-xi)  in the cocompact  case 
(Q , t  ---- Q. . t ) ,  following the strategy outlined there. 

(xo.9)  Our  second proof  will bypass lemma (Io .6) .  The  puri ty of the branch 
locus theorem can be deduced from the fact that,  if Y is a complex submanifold of a 
complex manifold X of complex codimension _> 2, and B a small ball around y e Y, 
then B - - Y  is simply connected. It  is the latter fact which we will use directly to 

prove (x o. 7). 
The  reader who merely wants to get the idea of how we complete the proof  when 

Q . t  + Q,.,t can skip to Proposition (IO. 18. I). 
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(xo. xo) Our  second proof of (xo. I. x) comes after proving that ~ is etale on Q., ,d 
that in turn is proved in stages. 

Set N = c a r d S .  For i between o and N - - 3 ,  set 

= H 

where T runs through all stable partitions of cardinality >/ card S --  i. Then Q0  =- Q ,  
Q s - 3 = Q , t .  Set Q N - 2 =  Q,st .  Let Q.i denote the completion of Q . ~ Q  
over Q i  (i == I, . . . , N - -  2). We shall prove inductively that ~ ,  is etale on Q~. 

Proposition (i o. 17) below will be used repeatedly to show at each stage that as one 
adds on a submanifold, the extended map ~ ,  remains etale. We lead up to it via some 
general topological remarks, especially Proposition (i o. 15. t) and Corollary (I o. 15.4). 

Proposition (xo .x t ) .  - -  Let q~:X -+Y be a continuous map with Y locally connected 

and X Hausdorff. Assume that each y e Y admits a neighborhood V such that each x ~ ? - I ( V )  
has an open neighborhood U with ?(U) D V such that q> induces a homeomorphism from U to ~(U). 
Then ? is a covering map. 

We first prove the 

Lemma ( I o . x x . I ) .  - -  Let ? : X ~ Y  be a continuous map with Y connected and X 

Hausdorff. Let X x and X 2 be open in X and such that ~ induces homeomorphisms from Xi to Y,  

i = x, 2. Then X 1 = X2 or X 1 n X~ = 0 .  

Let s i : Y ~ X  be the inverse o f ? [ X i . .  The set of  y e Y  ,,~ith s l (y  ) = s 2 ( y )  
is closed. It is also open, being the image of X1 r3 X 2 by ? : X x ~ Y. It is hence the 
whole of Y or empty;  i.e. X I = X  2 or X x c ~ X ~ =  O. 

Proof of (Io.  II) .  - -  For V C  Y, let ~ be the map induced by ? from q~-~(V) 
to V. We have to show that each y e Y has a neighborhood V such that 

(~- t (V),  ~ )  _~ (V • D, prl) 

with D discrete. Take V as in (x o. 1 I), open and connected. Replacing the U of (I o. I i) 
by U n q~-~(V), we find that each x e ~-a V is contained in an open set U such that ? 
induces a homeomorphism from U to V. By (xo. Ix. I) applied to ?-~(V) ~ V, they 
form a partition of ?-~(V) and the claim follows. 

Proposition (Io.  x2). - -  Let ? : ( X ,  0) ~ (Y,p) be a continuous map of metric spaces, 

with Y -  {p} locally connected. We write d for the metric on both X and Y.  Assume that 

there exists a neighborhood U of o such that for each neighborhood V of o, one has 

a) there exists r > o such that for all x e U --  V,  the open ball B~(x) maps homeo- 

morphically onto an open set of Y; 
b) for all r  there is ~ >  o such that for each x e U - - V ,  cpB,(x) DB~cp(x). 

Then, there exist open neighborhoods X '  of o and Y '  of p such that ,p : X '  --  ~?- 1 (p) __> y ,  _ p 
is a covering map. 
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Rough ly  speaking, a) b) mean  that  on U -  {0}, ? is a local homeomorph i sm 

with some uniformity.  The  uniformity  is a l lowed to get worse for x ~ o. I t  is not  
assumed that  o is isolated in cp-l(p). U n d e r  addi t ional  assumptions,  this will be a conse- 

quence ;  see (10.x3) .  

Proof. - -  Choose U as in ( I0 .  I2). Select a ne ighborhood  V of  0 and  ~(I) > 0 
such that  B~llI(V ) : = { x e X [ 3 v e V d ( x , v ) < ~ ( 1 ) }  is conta ined  i n U .  I f  B~(o) C U ,  
one can take r = r  and  V = B ~ ( 0 ) .  B y a )  b) there is e and "~ such that  

(*) for all x ~ U --  V, q~ induces a homeomorph i sm of  B,(x) with an open set of  Y 

containing ~(q~(x) ) .  

Set Y' = B~(p) and  take X '  to be  the set of  all x with ~(x) E Y' such that  either 

(i) x e V ;  or  
(ii) there is xt e U -  V with d(x, x l ) <  ~, and  ~ ( x t ) e Y ' .  

In  case (ii), x eB , (xx) t~  q~-x(Y')C X '  and ~ induces a homeomorph i sm of  
B,(xt) n ~ - l ( y , )  with  Y'. This  results f rom (*). 

Fix y e Y'  - -  p and let W be a ne ighborhood  of  9, in Y' - -  {p}, disjoint from a 
ne ighborhood  of  p. Then  ~ - x W  is disjoint f rom a ne ighborhood  of  0 and  by  a) b) 
for r small enough there is B(2) such that  

(**) for all x e U with q~(x) e W, ~ induces a homeomorph i sm from B,i2)(x ) to an 
open subset o f  Y containing B~i,)(~(x)). 

We may  and  shall assume that  ~(2) < r and  that  B,~21(y) C W. Propo-  
sition (IO. I2) now follows f rom (zo. i I )  appl ied to X '  - -  q~-t(p) -+ Y --  {p} and 

from the 

Lemma ( x o . x 2 . x ) .  - -  Each x in X'  n ~-l(B~12)(y)) has an open neighborhood B' 
in X '  which maps homeomorphically onto an open subset of  Y containing B~/21(y ). 

As x ~ X' ,  one of  the condit ions (i) (ii) holds. In  the first case (x EV) ,  one 

has B,12)(x ) C U,  and  we claim that  B,121(x ) c~ q~-~(Y') C X' .  For if x' eB,4~)(x ) 
and  q~(x') ~ Y ' ,  then either x ' E X ,  by  vir tue o f ( i )  or x ' ~ U - - V  and  x ' ~ X '  by  

virtue of  (i) with x 1 = x'. In the first case, B' = B,121(x ) n q~-l(y,) and  one uses (*). 
In  the second case, take B' = B,(xl) c~ q>-l(y,) and use (*). 

The  assumptions of  ( Io .  I2) remain  valid if we replace X and Y by  open neighbor-  
hoods of  o and  p. The  X '  and  Y' of  ( io .  I2) can hence be chosen arbi t rar i ly  small. 
F rom this, we will deduce  the 

Corollary ( I o . z 2 . 2 ) .  ~ The point o has a fundamental system of  open neighborhoods X '  
such that for  Y '  a suitable open neighborhood of p, X ' - -  e d- 1 (p ) is open and closed in ~ -  l (y ,  _ {p }) 
and is a covering of  Y" --  {p }. 
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First take X~, Y0 as in ( Io .  I2), and  W a neighborhood o f o  such tha t  W - C  X~. 

I f X ' , Y '  are as in ( IO.I2) ,  with X ' C W ,  Y ' C Y  0 and  if X ~ : - - - - X ~ n c U ~ Y  ', then 

both  X~ --  q~-l(p) and  X '  --  q~-l(p)(C X'  t -  q~-l(p)) are coverings of  Y' - -{p} ;  
hence X '  - -  q~-l(p) i sopen and  closed in X'  1 --  q~-l(p). As ( X ' - -  q~-a(p))-C W -  C X0, 

X '  - -  q~-l(p) is also open and  closed in ? - l ( y ,  _ {p}). 

Corollary (xo .x2 .3 ) .  - -  I f  o is not isolated in X ,  and i f  p has a fundamental system of  
neighborhoods V such that V --  p is connected (in particular, non empty), then ? is open at o. 

I f o  is not  isolated, X '  cannot  be conta ined in ~p-l(p) ; for applying ( Io .  I2) a) to x 

in X '  near  o would contradict  ~(X')  C {p}. I t  follows tha t  q~(X' --  q~-*(p)) = Y' --  {p} 

and  hence that  r = Y'. Openness follows. 

Proposition (xo. x3). - -  In addition to the hypothesis of  ( to .  x~), assume that Y -  {p} 

is locally simply connected and that 

c) p has a fundamental system of  open neighborhoods 3r r,  such that each V --  {p} (V in 3r 
is connected and that for  V C V' ,  both in 3 r ~x(V - - { p ) )  --~ 7 r l (V ' - -{p}) .  

d) o has a fundamental system of  open neighborhoods N with N - - ( o  } connected (non- 
empty). 

Then, one can find X '  and Y '  as in ( io . x2)  such that q~': X '  ~ Y '  has the following 
additional properties: Y '  is in Y/', c?' - ~ (p) = { o }, X '  - -  { o } is connected, and X '  is the completion 
of  X '  - -  { o ) above Y' .  

Proof. of ( Io .  i3). - -  Shrinking X and  Y, we may  and  do assume tha t  Y is in Y/', 
that  ? : X --  q~-l(p) ~ y _ {p} is a covering map,  and  that  ? is a local homeomorphism 

at each point x + o. Let  N be an open ne ighborhood of0 such tha t  N - - { o }  is connected.  

Lemma (xo .x3 .x ) .  - -  N --  ~ - ' (p )  is connected. 

Let A C  N - -  ~- l (p)  be open and  closed. Each  x e q~-i(p) -- {0} has a 

ne ighborhood W C N  with  W --  {x} ~ q~(W) --  {p} connected.  For  such a W, 
W --  {x} = W --  q~-l(p) lies either in A or in its complement .  I t  follows tha t  the closure 

of  A in N -- {o) is again open and  close:t and,  by  hypothesis, is empty  or the whole of  

N -  {0}. I f  it is empty  (resp. the whole of  N -  {o}), A is empty  (resp. the whole 

of  N --  ? - t (p ) ) .  
Since Y --  {p} is locally connected,  so is the covering space X -- ? - l ( p ) .  Each 

connected component  of  X - - ~ - l ( p )  is open and  closed in X - - ? - l ( p )  and  is a 

covering of  Y -  {p}. Let  N I be the component  of  N conta ining N -  q~-l(p). 

Lemma (xo. x3.:~ ). - -  N1 n q~-l(p) = {o}. 

Any  x + o in ~0-t(p) has an open neighborhood W'  such tha t  q~ induces a homeo- 

morphism of  W'  with an open neighborhood o f p  in Y. Take V in 3 r with V C  q~(W') 

and  define W:- - - -W'c~q~-I (V) .  One  has q ~ : W - ~ V .  
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The assumption nl(V -- {p}) --% nl(Y -- {p)) implies that for any covering map 

: Z - + Y - - { p } ,  one has ~0(+-1(V--  {p}))-~no(Z).  In particular, as Nt is con- 
nected, so is N 1 n ~-I(V).  Both N 1 n q~-l(V) and W -- {x} are connected coverings 
of  V -  {p}, contained in the covering ~ - a ( V -  {p}). They are not equal: x is the 
only point of ~-X(p) in W- ,  while o end- .  They are hence disjoint and x r  N 1. 
Lemma (Io. I3.2 ) is proved. 

W e t a k e  Y ' = Y  and X'~-~Ni-.  It follows from (xo.13.2) that X'  is open and 
closed in X and that q~-l(p) --{o}. By construction, X ' - - q ~ - l ( p ) =  X ' - - { 0 }  is 
connected. For each V in r n l ( V -  {p})--~ n:(Y' --  {p}) implies as above that 
~ - l ( V  --  {p }) is connected. It  then follows from (IO. I2.2) that the ~ - I ( V ) c ~ X '  
(V e ~r form a fundamental  system of neighborhoods of 0 in X'. Consequently X'  
is the completion of X ' - - { o }  over Y'. 

Corollary ( x o . x 3 . 3 ) .  - -  If, in addition to the assumptions of (Io.  I2) and ( x o .  I3)  ~ the 
V -- {p } for V in 7Y" are simply connected, then ~ is a local homeomorphism at o. 

Indeed, with the notation of (IO.I3) , Y ' - - { p }  is simply connected; hence 
: X' - -  {0} ~ Y' -- {p} is a homeomorphism as well as q~' : X'  ~ Y'. 

(xo. x4) We shall require a simpler variant of (Io.  I2) in ou~" extension of the 
map ~ ,  to cusp points. In that situation, we shall be dealing with a continuous map 

: (X, 0) --~ (Y,p). Metrics are given only on X --  {0} and Y --  {p}, and we assume 

a) The ~- l (V) ,  for V a neighborhood o f p  in Y, form a fundamental  system of 
neighborhoods of 0. In particular, ~-X(p) is {o}. 

b) There is a neighborhood U of o such that for any neighborhood VC U, the 
conditions a), b) of ( :o.  I2) are satisfied. 

Fix a neighborhood V: o f p  such that ~-x(v1) C U. For any neighborhood V 2 
o f p  and x e V : - - V ~ , "  the map q~I : ~ - : ( V 1 - -  V,) -+ V: --  V9 induces a homeo- 
morphism of B,(x) with an open set containing Bn(~:(x)) for suitable e and B. The 
map ~x is hence a covering map. As this holds for any V2, ~ : ~-  l(V 1 _ {p }) _+ V1 _ {p } 
is also a covering map. 

I f  in addition 
c) p has a fundamental  system of neighborhoods V such that V -- {p} is connected 

and simply connected, 
d) o has a fundamental  system of neighborhoods N such that N -- { 0 } is connected, 

then an easy argument shows that ~ is a local homeomorphism at o. 

(xo. xS) Actually, we require (Io. I3.3) for the more general case where 0 and p 
are replaced by strata. The analogue of (Io.  I2) is: 

Proposition (xo.x5.x). - - L e t  ~ : (X, Xx, 0) ~ (Y, YI,P) be a continuous map of metric 
spaces, with Y --  Y1 locally connected. Assume that there exists a neighborhood U of o such that 
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for each neighborhood V of X1, the conditions a) b) of ( io .  i2) hold. Assume further that X 1 
is locally compact and that the map ~1 : X1 ~ Y1 induced by ~ is a local homeomorphism at o. 
Then there are open neighborhoods X '  of o and Y '  of p such that q~ : X '  -- q~-~(Yx) ~ Y '  - Yt 
is a covering map. 

Proof. J Fix U as above, open and small enough so that for some open set R 

disjoint from U, K :-- X1 -- R is compact  and so that 9 is injective on K. Note that 
if we take R = X - - U - ,  then K = X j  n U - .  

The subset q~(K -- U) of Y1C Y is compact  and does not contain p. Let W be 
an open neighborhood of  q0(K -- U) whose closure does not contain p. Then, ~ - 1 W  
is an open neighborhood of K -  U, and q~-l(W-) does not contain 0. 

Select a neighborhood V of Xt ,  and e(1) > o such that 

B,c,I((V n U) -- q~-t(W-)) C U;  

this can be done as follows. Since K - - q ~ - t W  is compact  and in U, wechoose ~ ( I ) >  o 
so that t ~ ( t l ( K - - q ~ - t W )  C U .  One takes V = B , 0 1 ( K - - q ~ - t W  ) u q ~ - X W u R .  
Then (V n U) -- q~-t W C  B,(t/(K --  q~-t W) and B,(tI((V n U) - q0-t(W-)) C U by 

choice of , ( i )  

U ~ ~ 1  ~ R XI 

By a), b), there are r and ~ such that 

(*) for all x e U - - V ,  9 induces a homeomorphism of Be(x ) with an open set of Y 
containing B2~,(~(x)). 

We may and do choose ~ small enough so that Bn(p) is disjoint from W - .  Set 

Y' = B~(p) and take X'  to be the set of all x with ~(x) e Y '  (hence x r q~-x(W-)) 
such that either x e U n V ,  or there is x l e U - - V  with d(x, x x ) < e  and q~(xl) e Y ' .  

Any y e Y -- Yx has a neighborhood W v disjoint from a neighborhood of Yx; 

hence, as in (IO. I2), for r small enough there is ~(2) such that 

(**) for all x E U with q~(x) e Wv, q~ induces a homeomorphism from B,(~l(x ) to an 
open set of Y containing B2,(2)(~(x)). 

One can assume that ~(2) < , ( I )  and B, i21(y ) C W, and one completes the proof  
just as in ( io .12) ,  using that q~(x) e Y '  implies x r  

(zo. t 5. 2) As in ( io .  12.2), X '  can be taken as small as we please. I f  o is not an 
interior point of Xl ,  and i fp  has a fundamental system of neighborhoods V with V -- Ya 

connected, ? is open at o. The proof  is as in ( io .  I2.3) .  
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Proposition ( t o .  t 5. 3). - -  Assume that Y - -  Y1 is locally simply connected and that 

c) p has an open neighborhood V o with V 0 --  Yx connected, and each p' e Y1 close 

enough to p has a fundamental system of neighborhoods V C V o with V - -  Y2 connected and 

rq(V -- Y1) -% ~l(Vo --  YO. 

d) Each o' e X 1 close enough to o has a fundamental system of neighborhoods N with 

N - -  X 1 connected. 

Then one can find X '  and Y '  as in (I o. 15 . I) such that ,?' : X '  -~ Y '  has the following 
additional properties: c) holds with V o ---- Y' for  all p '  E YI n Vo, X'  --  X 1 is connected, 

X'  1 : =  X x n X '  is the inverse image of Y~ : =  Y a n  Y', q~' induces a homeomorphism from X'  t 

to Y't, and X '  is the completion of  X '  - -  X] above Y ' .  

Proof. - -  Shrinking X and  Y, we m a y  and  do assume tha t  c) holds for V o = Y 

and for all p '  e Ya n V0, tha t  91 : XI -+ Ya is a homeomorphism,  tha t  d) holds for 
all o ' e X l ,  that  q~ :X--q~- t (Y1)  ~ Y 1  is a covering map, and that  q0 is a local 

homeomorphism at each point  x r X 1. Let  N be an open neighborhood ofo with N -- X 1 

connected.  As in (xo. I3.  I), one checks tha t  N --  q~-t Y1 is connected.  Let  N 1 be the 

connected component  of  X--q~- lYa conta in ing N--q~-aYa.  I t  is a covering of  Y - - Y r .  

I f  we shrink Y again wi thout  changing the rcl(Y -- Y0 ,  and  replace X, N, N x 

by their traces on the pull-back of the new Y, we get N --  X,  C N t with N~ connected 

and N D X  1. 
A s i n ( x o .  r3. ~), one sees that  N i - n q ~ - l Y t = X 1 .  One takes  Y ' = Y ,  X ' = N ~ -  

and  ~ ' :  X '  -~ Y' induced by ~. The  set X '  is open and  closed in the (shrunken) X 
and  ? , - l ( y ~ )  = X~. All the listed properties of  q~' are clear from the construc- 

tion except for X '  being the complet ion of  X ' - - X ' ~  over Y" .  For  p ~Y~, 
p ' =  q~'(o'), and  V an open ne ighborhood of  p '  with ~ x l ( V -  Y'~)~ r q ( Y -  Y~), 

one has n 0 ( q ; - l ( V  -- Y'I)) ~ n 0 ( X '  -- X't), i.e. q~'-t(V -- Y~) is connected.  The  
9 ' -1 (V)  for such V form a fundamenta l  system of  neighborhoods of 0' and the assertion 

about  complet ion follows. 

In  part icular ,  

Corollary ( t o . x 5 . 4 ) .  - -  In addition to the hypothesis of  ( Io .  15 . I) assume that Y --  Y1 

is locally simply connected and that 

c') Each p'  e Yx  close to p has a fundamental system of  neighborhood V with V -- Y1 

connected and simply connected. 

d) Each o' e X x close to o has a fundamental system of neighborhood V with V -- X x 

connected. 
Then q~ is a local homeomorphism at o. 

(xo .x6)  We will apply (Io.  x5.4) iteratively to some stratified spaces. In the 

next proposition, " stratified space " means a Haussdorf  topological space U, provided 

with a part i t ion S into locally closed subsets, the strata, where 
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a) each stratum is a manifold; b) the closure of  any stratum S is the union of 
strata; (U, S) is conical in the following sense and locally constant along each stratum: 
each point x of any stratum S has a neighborhood V isomorphic (with the induced 
partition) to the product of V ~ S with the cone over (E, S(E)), where X is a topo- 
logical space E, provided with a partition S(E). For simplicity, we assume in addition 
the existence of  a metric d for which d(x,y) is the greatest lower bound of lengths of 

paths from x to y. The case we will need is U = Q.st, 8 = the partition of Q.ot 
by the Q.T for T varying over the stable partitions. 

Proposition (xo. x6. t ). - -  Consider a diagram 

L 

Uo c ~ U1 r , U 

where 

a) U is locally compact stratified space; U0 is a connected open and dense stratum, and U 1 -- U0 
is a union of  strata; each point has a fundamental system of  neighborhoods whose traces on U 0 

are connected. 
b) ~Jo is a covering space of  U0, and ~J1 (resp. U) is the completion of  ~Jo over U t (resp. U). 
c) The coverin~ ~Jo of  U0 is Galois, with group F. 
d) Y is a manifold, provided with a metric and an action of  F by isometrics. The map ~ is 

equivariant. 
e) ~ ] ~J1 is a local homeomorphism. 

f )  For any stratum S, S" : =  p-I(S) is a covering space of  S because U0 is a stratum. We 
assume that.for S C U --  U1, each point of  "S has a neighborhood W in g such that ~ [ W 
is a tame embedding, with ~(W) a subvariety of  codimension >1 3 in Y .  

Then, q~ is a local homeomorphism and the (local) decomposition groups of  U]U are 
finite, i.e. O is locally finite to one. 

Proof. .... Let d be a P-invariant metric on ~!; for instance take d(x,y) = the 
greatest lower bound of the lengths, computed in U, of paths in U from x to y. 

Let S be an open stratum of U - U 1. We first prove that ~0 is a local homeo- 
morphism at any point o s 0-1(S). For this, replacing U by a suitable open neigh- 
borhood V of p(o), U by the connected component  of p- l (V)  containing o and P by 
the stabilizer of o, we may and shall assume that U -- U1 e S, that p induces an iso- 
morphism S ' - ~ S  and that ~ embeds g in Y. Replacing Y by a F-stable open 
neighborhood of ~(o), and ~I by its inverse image, one may further assume that 

Yl : =  q~(S') is a tame closed submanifold of Y. Its codimension is >/ 3. We will 
apply (xo. x 5.4) with X = U, X 1 = g and o, Y, Y1, O as above. Local connectedness 
and simple connectedness of Y -- Y1 results from Y being a manifold. Condition c') 
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of (IO. I5.4) results from YI being a tame submanifold ofcodimension t> 3. Condition d) 
of (IO. I5.4) results from assumption a). By e) ~ ] (X -- X1) is a local homeomorphism, 
and it remains to check the uniformity conditions of (IO. 12). As neighborhood of o. 
we choose the pull back 0-1(K) of a compact neighborhood K of p(o) ~ U. By definition 
of the topology of U, any neighborhood of X x = g - ~ S  contains p-t(V),  for V an 
open neighborhood of S. The required uniformities will follow from the compactness 
of K -  V. The function from X -  X t to R ~ : x ~  the greatest lower bound of 
the ~ such that ~ is an embedding on B,(x), is > o, lower semi-continuous, and F-invariant; 
hence it is of  the form rp with r continuous. On K -- V, r stays away from o, and 
this gives (Io. I~ a)). If r is such that for any x ~ p - l (K -- V), q~ ] B2,(x) is an embed- 
ding, the function from p - ~ ( K -  V) to R = : x ~  the greatest lower bound of the 
such that q0(B,(x)) D B~(q0(x)) is > o, lower semi-continuous and F-invariant, hence of  
the form rp and staying away from o. This gives ( io.  x2 b)). 

We now prove that q~ : U -+ Y is a local homeomorphism. We have just shown 
- - l .  t t that q~ is a local homeomorphism on 0 (Ut), for U~ the union of U1 and of the open 

strata of U -- Ut .  The assumptions of the Proposition hence hold with U 1 (resp. Ul) 
replaced by U'  x (resp. p- t  U'I), and one concludes it proof by induction on dim(U --  UI)- 

It  remains to show that for any x ~ U, the stabilizer A C Y' of x is finite. Fix 
a neighborhood V of x such that ? I V  is an open embedding, fix a A-stable compact 
neighborhood K of q~(x) in q~(V), and define Vx = V ~ q~-~ K. It  is a A-invariant 
compact neighborhood ofx. For y ~ V 1 n U0, 17'y is closed and discrete. Therefore Ay, 
which is in I'y r~ VI, is discrete and compact, and hence finite. Thus A is finite. 

We will use (I o. 16. i) to give an alternate proof of lemma (i o. 7), by passing the. 
purity of the branch locus theorem (which was derived in the special case Q.,~ = Q,,t)- 

Lemma (xo. x 7 ) .  - -  I f  condition (INT) is satisfied, the map ~ : Q.,t ~ B+(~ is 
a local homeomorphism. 

Proof. - -  We apply (Io. I6. l) with U = Q, t  stratified by the QT for T varying 
over the stable partitions, lJ 0 = Q.,  Ux = the union of Q. and of the (complex) codi- 
mension one strata, ~0 = Q.; hence U = Q, t  and q~ = N~. Conditions a) to d) 
are clear, e) is (9.I2) and f )  follows from (6.9) and (3-9)- 

( x o .  x 8 ) .  - -  As shown in (8.7), the map N~ extends to a continuous map from Q.,,s 

to B+ : =  B+(0~)0, where B+ has the topology (5-4)- Fix J ~ Q~,,p and o e ~3,~ 

above J. Define ~ : =  N~(o). 
Let V be an open connected neighborhood of J, and V be the connected component 

containing o of  its inverse image in Q.,~t. For V small enough, one has: o is the only 
point of~r above J ;  the stabilizer A ~ F o fo  acts on "~, and V = ~Z/A; if~' is a distance 
to p function (5.3) on B + , / ~  descends to a continuous f i m c t i o n f o n  V, vanishing only 
at J.  As V is locally compact, it follows, for u small enough, that the open sets 
{ v If(v) < r } form a fundamental  system of neighborhood of J.  As a consequence, 
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" ~  1 the w~- (A), for A a neighborhood of p, form a fundamental system of neighborhood of o. 
We now apply (~o. ~4) to prove 

Lemma ( x o . x 8 . x ) . -  I f  condition (INT) is satisfied, the map ~ : Q , t  ~ ~ -  is 
a local homeomorphism. 

Proof. - -  I t  remains to prove it at a point o as above. We apply (xo.14) to 
~ ,  : (~9, o) -+ (~x, p). Condition a) has been proved. Condition c) and d) are clear. 
The  map is a local homeomorphism outside of o. The required uniformity ( io.  14 b)) 
follows as before from the local compactness of V and A-equivariance. 

Theorem ( t o . x 8 . 2 ) . -  Assume condition (INT).  Then the map w~ :Qsst  ~ B+ 
restricts to a homeomorphism of (~,t onto B + and maps Q, , t  homeomorphically onto an open 
subset 0fB § in the (5.4) topolo~. 

Proof. - -  By Proposition (Io. 18. I), ~ is an etale map of Q.,0t into B+. Let q) 
denote the restriction o f ~  to 0..st. It  suffices to prove that q) is an covering map of Q.st 
onto B +. 

For any x E Q s t ,  set 

f (x)  = sup {r [q) maps a neighborhood of x homeomorphically onto B,(q)(x))}. 
Then  as in the proof of Lemma (zo. I6. x ) , f i s  continuous, f (x)  ~> o for x e Q.,t and 

f('l.x) = f ( x )  for all u ~ nx(Q., 0); that is, f descends to a positive-valued continuous 
function on Q , t -  

Since ~ ,  is etale at each point of Q.sst and Q.0o,p consists only of finitely many 
points, one can deduce from the (5.4) topology of B+ the existence of an open neighbor- 
hood W of Q.~usp and an ~ 1 > o  such that f ( x ) ~ x  for all xEp-~(W) .  By w 4, 
Q.sst is compact. From the compactness of Q.st - W one deduces that f has a non- 
zero lower bound on Q.st -- O-t(W) �9 Consequently, f has a non-zero lower bound 
on Q.st. From this it follows that B~(~(Q.,t)) = r and therefore, ~(Q.st) ~- B+- 
By ( io.  I I), ~ is a covering map. Inasmuch as B + is simply connected, ? is a homeo- 
morphism. 

From the fact that each point y e Q0usp has a base of neighborhoods {V} with 
V --  Y connected, and the fact that ~ ,  is a homeomorphism on Q.,t, it follows that ~ 
is injective on Q , , t  and hence a homeomorphism onto its image, in the topology of (5.4)- 

(XO.X9) Let S be a finite set with at least 3 elements, N = card S, ~ = ([z,),e s 
with o <  ~~  z and Z [ z , = 2 .  Set ~ ,=exp2~rV/-2- : i  "~, for each s E S ,  P the 
projective line over C, G = Aut P, M the subset ofinjective elements in ps, Q. = M/G, 

o E Q., and 0 : nx(Q., 0) -+ Aut B+(a)o = PU(I ,  N --  2) the homomorphism of ~I(Q., 0) 
into the isometry group of the ball B+(a)o, defined in (3-Io .2) .  Set F = 0(na(Q. , 0)), 

B + = B+(o~)o. 
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Theorem ( to .  xg). - -  I f  ~ satisfies condition (INT),  then F is a discrete subgroup ofAut  B 
and discontinuous on B +. 

Proof. - -  By Theorem (Io. 17. I), the action of F on B + is equivalent to the action 
of F on Q.st. The latter action is discontinuous on Q. since P is the covering group of 
the covering map Q. ~ Q.  It follows at once that P is discontinuous on a dense open 
subset of  B +. Since P acts on B + via isometries, it follows that F is discrete in Aut B +, 
the isometry group of B +. Since Aut B + operates transitively on B + with a compact 
isotropy group, F operates discontinously on B +. 

Corollary (xo.x 9. x). - -  For any y e (~ , t ,  the stabilizer ru of  y in I" is a finite group. 

Proof. - -  Set p = ~ , (y ) .  Then Lu = rp = F n (Aut B+)p. Since F is discrete 
in Aut B +, and (Aut B+)p is compact, I'p is finite. 

Corollary (xo. 1 9 . 2  ) .  - -  Q. is the normal covering of  Q universal with respect to the pro- 
petty [R]: for  each stable partition T of  S with card T ------- card S -- I, / f  k T is defined as 
in (9.9), the ramification index along Q T  divides k W. 

Proof. - -  Let Q" denote the universal covering with the property above. Then 
the map Q" ~ Q .  extends to a covering map of Q.1. By Theorem ( io . i 8 .2 ) ,  Q.I is 
homeomorphic to the complement in the ball B + of a closed subset of  complex codi- 
mension 2 and is simply connected. Consequently, Q* ~ Q .  

Corollary (xo.x9.3) .  - -  Above a suitably small neighborhood U of a point x ~ Q , t ,  
each connected component of  (~ n O- x U is the universal covering of  0 n U with respect to 
the ramification property [R]. 

The proof is the same as the preceding one, with the ball replaced by the trace 
of a neighborhood of a point in B+ (in the topology of (5.4)). 

Corollary (xo. x 9 . 4 ) .  - -  The stabilizer in F of  a point x in the ball is generated by 
C-reflections. 

Proof. - -  Choose U as in Corollary (i o. 19.3). Then U n Q.1 is simply connected. 
Hence n l ( O  n U) is generated by loops around the ramification locus. These gene- 
rators yield C-reflections by (9.2), generating F x if x ~ B +. 

z x .  F i n i t e  m e a s u r e  

In  this section, the notation and assumptions (4.o) as well as the assumption 
N >t 4 are continued. We assume moreover that the W' s are rational. 
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(xx.x)  Let J e Q . , t -  Q , t  be a semi-stable point  of type (S(x), S(2)) where 

Y' Ix, = I. Let a eS(x)  and b eS(2) .  Let W be the neighborhood of J in Q.,,t 
, ~ S(I) 

lying below the set of all y e ps  such that  y(a) = o, y(b) = oo and such that  

sup { ]y(s)[; s e S(x)} <_ inf{ {y(s)[; s s S(2)}. 

Let p : Q.,,t ~ Q.,,t and let p e p - t ( j ) .  By (8 .2 .4) ,  r q ( Q ,  0) operates on Q . , t ,  and 

~ l ( Q ,  o)p ~ D s = image of rcx(W t~ Q)  in ~z(Q,  0); 

here, ~I(Q., o)p denotes the stabilizer of p and D a the decomposition group of J .  
By (4.5), W -- {J} is a simply connected manifold if card S >/ 5; hence ~x(W n O)  
is generated by circuits around the codimension i subspaces QT for all stable par- 
titions T finer than {S(I),  S(2)} with c a r d T  = c a r d s  -- i if N I> 5. By (9.2) the 
monodromy of such generators are complex reflections which have finite order if Ix, is 
rational for all s eS .  Thus 

(xx.x.x) I f  card S >/ 5, the quotient  ~ t ( Q ,  0)p/Ker 0 is generated by elements 
of finite order;  here 0 denotes the monodromy action (3 . io .2 ) .  

(xx.~,) Assume that  condition (INT) is satisfied. Set V = HI(Po, L0), let PU(V)  
denote the projective unitary group on V with respect to the hermit ian form of (3. xo. 2). 
Let B + = B(0t)o +, i.e. the set of all v r V with (v, v) > o modulo C'. Let ~ : 0..,,t -~ B+ 
be the map  of Proposition (8.7)- Set 

t = v = 0)). 

By Theorem ( to .  8. I), ~ ,  is a homeomorph ism onto an open subset of B+. Consequently 

0),) = r t  

the stabilizer o f t  in F. By ( x x . I . i )  and (xo. x9.3) , we get 

(xx .2 .x)  F t is generated by C-reflections of finite order if d im B + > I and by 
a unipotent  element if d i m B  + = x (cf. ( I2 .3 .2) ) .  

(xx.3)  Let v e l ,  let PU(V) t  (resp. PU(V)~) denote the stabilizer in PU(V) o f /  
(resp. d, (5-3)), and let N denote the unipotent  radical of PU(V) t .  As pointed out in 
the proof  of Proposition (5.5), 

P U ( V ) d N  = U(V")  

which is compact ,  and P U ( V ) d N  = R • U(V") .  Hcncc PU(V) , /N  contains all 
compact  subgroups of PU(V)dN.  Therefore, as is well-known, PU(V) ,  contains all 
compact  subgroups of PU(V) t  (because PU(V)~ contains a maximal reductive subgroup 
and all maximal  rcductive subgroups of PU(V)t  arc conjugate by an clement of N). 

From (x I. 2. x), onc infers 

( x x . 3 . , )  r t r  PU(V)o .  
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Remark. - -  A more direct proof  of  (I I. 3. i) results from (7 .3 ) - -more  precisely from 
the fact that on W, we have a horizontal family of  functions d. It  follows at once that l p 
preserves a " distance to t " function (5.3). 

Theorem ( n . 4 ) .  - -  Let S be afinite set, o < ~t, < I, ~, = exp 2~  V - I ~ , ,  ~-].[J., = 2 
(all s ~ S ) .  Let 0 : z q ( Q , , 0 ) - + P U ( V )  be the monodromy action defined in (3.IO.2) .  
Assu?ne 

(INT) For all sOe t in S such that ~, + ~ <  x, (t - - ~ t , - - ~ t )  - t  is an integer. 

Then r ,  the image of O, is a lattice in PU(V) .  

Proof. J By Theorem (xo. 19) , r is discrete in PU(V) ,  and by Theorem ( io .  x8.2) 

= 

where w~(Q.m) is an open subset of  B+ with respect to the topology of (5.4)- Hence 
F\~,(Q.,,~) is the union of a compact  quotient of a subset of  B + and a finite set of 
neighborhoods W a (in the topology of  (5.4)) of points t s ~ 0B +, where t a ~ , ( p - t j ) ,  

P : (-~,,t -+ Q , , t ,  and J varies over Qc~,p. By w 4, Q , , t  is compact.  Any compact 
subset of B + has finite measure. By (i x. 3. x) and Proposition (5-5), the image in F \ B  ~ 
of W a - - t  a has finite measure. It follows that FkB + has finite measure. Thus I' is 

a lattice in PU(V) .  

Lemma (xx.5).  The subgroup I'~, is Zariski-dense in PU(V) .  

The proof will be by induction on card S. By (3. io .2) ,  we can lift r ,  c PU(V) 
to a group r'~ c U(V) which is generated by pseudo-reflections (cf. (9.2), (12 .3 .2) ) ;  
recall the definition: u is a pseudo-reflection if and only if y --  t has rank I. Hence 
r'~ is irreducible on the linear span L of the one dimensional subspaces of  V corre- 

sponding to its pseudo-reflections. 
It  is easy to verify that L = V. Thus F~, stabilizes no proper vector subspace of  V. 
We start the induction at N = 4. Here /'~ operates on the complex t-ball as a 

triangle group, rotating through twice the angle at each vertex of a geodesic triangle. 

Since o < ~t, < x and ~ ~to = 2, the sum of the angles of  the geodesic triangle is 
s ~ 8  

less than ~ and the orbit of each point in B + under r~ is infinite. Let r'~, r ,  denote 
the Zariski closure of F~,' r~ in U(V) and PU(V)  respectively. The group l"~-' can 
have no connected normal solvable subgroup non-trivial modulo the center of U(V),  
otherwise, some r'~ orbits in B + would be finite. Consulting the short well known 

list of  closed complex analytic subgroups in PU(I ,  x) (~  PGL(2, R),  one sees that 

r ~ = P U ( V )  if c a r d S  = 4 .  Suppose now c a r d S > 4 .  
By (6.2I)  and two induction hypothesis, r~ D PU(V)  where T is a stable par- 

tition of  S with card T = card S - -  i and V T is the corresponding subspace of  V. 

Since r' ,  is irreducible on V, we infer r ,  = PU(V) .  
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x2. Ar i*hmet / c l ty  a n d  Integra l  M o n o d r o m y  

(x2. x) Assume that for each s ~ S, ~0 is a rational number  and let d denote the 

least common denominator  of {~to Is ~ S}. Set F = Q.(~/T), �9 the ring of integers 
in F, and V = Ht(Po, L0) where Po = P -  0(S) as in (3 . I ) .  Then the vector 
space V can be defined over the ring 0. To see this, let L(F) (resp. L(0)) denote a 
local subsystem of L on Po (suitably chosen using a base point on Po) with fiber the sub- 
field F (resp. subring 0) of C. The pairing of L with its complex conjugate induces an 
0-valued pairing on L(O). Then one can define cohomology combinatorially as in (2.2) 
with coefficients in L(0) ; one can also define the skew-hermitian cup product 

2--4 ~r : Hi(Po, L(O)o ) | H, (Po, ]~'(O)o) -~ I't~(eo, O) ~ �9 

combinatorially; set 

V(O) = HI(Po, L(O)o), V(F) = Ha(Po, L(F)o). 

Define 

C,*.*.x) v) 
where j = b - - b  for some b ~ 0 - - 0 n R .  This +o is a hermitian form on V d e f i n e d  
over 0 and may be identified with the form defined in (2.18), up to a real scalar factor. 

We lift the map 0 : nx(Q., 0) ~ PU(V) of (3. Io.2) via a local system L on M(c) 
to 0 ' :~x(M(c) ,  o) --+ U(V) by (3.I4) .  The image of 0' is in U(V) (0). Set 

( x 2 . x . 2 )  1 ~, : I m 0 ,  P~ : I m 0 '  

where ~ : { e x p 2 r c i ~ , [ s ~ S } .  Then 

( x 2 . x . 3 )  I", stabilizes V(0) .  

(x2.2) We collect here some remarks and definitions pertaining to arithmeticity of 
lattices. 

Let 1" be a Zariski-dense subgroup of G(k), for G an adjoint connected semi-simple 
algebraic group G over k, a field of characteristic o. Set E = Q,[Tr Ad 1"], the field 
spanned over Q, by { Tr  Ad g ] y E l"}. 

Proposition (x2.2.  x ) 

(i) The group G has a faithful matrix representation p such that 0(F) C GI_~(E) 
hence G has E as a field of definition). 

(ii) E remains unchanged when r is replaced by a commensurable subgroup of G. 

(and 

Proof. ~ Let T denote the function g ~-~ Tr  Ad g on G, and let W denote the C-linear 
span of the left G-translates o f T  (we define ( x . f )  (y) = f ( y x )  for any function f :  G ~ C, 
x a n d y  in G). Inasmuch as T is a sum of matrix coefficients, W is finite dimensional. 
Since 1" is Zariski dense in G, there is a finite set of elements xl, �9 �9 x, in I' such that 
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= { x l . T  , . . . , x . . T }  is a base of W. Let p~, :G---~AutW be the representation 
given by x~-~x.f for x ~ G, f e  W. It  is well known that the representation ~,~ is 
faithful ([xo], Theorem (2. I), p. x23). Let p(x) denote the matrix of p,o(x) with respect 
to the base [3. Then p(x) has all its entries in the field E for all x E F. 

To prove (ii) it clearly suffices to consider the case that F 0 is a subgroup of F of 

finite index. Replacing P0 by f'] xrx -1, we can suppose moreover that P 0 is normal 

in P. Then P0 is also Zariski-dense in G. Set E 0 ---- Q,[Tr Ad P0] and select the base 
~ = { x l . T , . . . , x , . T  } with x ~ e F  0 ( i = 1 , . . . , n ) .  Let a : E ~ C  be a mono- 
morphism which is the identity on E 0. To prove (ii), it suffices to prove that ~ leaves 
each element of  E fixed. For any y ~ P  and x ~ F 0 ,  we have yxy-~ePo. Hence, 

by (12.2.  x), 
9(yxy)-~ = ~ t) _--_ Op(y) "p(x) ~ 

that is p(y) 0(x) 0(y) -~ = O0(Y) p(x) ~ -~. Hence for all y ~ Fo, 0(y) -~~ 0(Y) 
centralizes i~(F0) and therefore 0(G) since P0 is Zariski-dense in G. The center of {~(G) 
is i and consequently ~ = {~(Y) for all y ~ G. Therefore ~ fixes each element of E. 

it is a form of G over E. 
natural E-structure of G. 
p'(P) C GI~(E),  it leads to 
via p |  

(x2 .2 .2)  Take ~ as in ( I2 .2 .1) .  The Zariski closure of p(E) in GL~(E) is an 
algebraic group over E. Because taking Zariski closure commutes with field extensions 

This provides the group G with an E-structure, called the 
I f  0' is another faithful matrix representation of G with 
the same E-structure. To check this, one compares p to p' 

I f F  is a subfield o fk  and G F an F-structure on G for which FC G•(F), the field 
of traces E is contained in F and, by the above construction applied to G r over F, the 
given F-structure on G is deduced from the natural E-structure. 

(x2 .2 .3)  Let A be a semi-simple algebraic linear group defined over the field Q. 
of  rational numbers, let V be a finite dimensional vector space defined over Q., and 
p : A  ~ GL(V) a faithful rational representation defined over Q,. By a theorem of 
Borel-Harish-Chandra [3], the subgroup P = p-I(GL(Vz)) is a lattice in A(R) for any 
lattice V z in VQ; that is, P is a discrete subgroup of A(R) and A(IR)/F has finite measure. 

(x2 .2 .4)  Let G be an adjoint connected semi-simple real Lie group. It is the 
topological connected component G(R)0 of G(R), for G an adjoint connected semi-simple 
algebraic group over R. By definition, a subgroup F of G is arithmetic in G if and only 
if there exists an algebraic group A over Q ,  a compact group K and an analytic iso- 
morphism 0 ofA(lR) ~ onto G • K such that 0(A(Z) n A(R) ~ has its projection into G 
commensurable to F. The group A is necessarily reductive. It can be assumed 
connected adjoint semi-simple; namely, replace A by A~ (A~ The group A is 

then a product of Q-simple groups A i (cf. [23] , p. 46 (3. z. 2)). I f  G is a simple non- 
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compact Lie group, it follows from the definition that all A~ but one, A1, are such that 
A~.(IR) is compact. Replacing A by A1, one can then assume that A is Q-simple, i.e. of 

the form (cf. [23], p. 4 6 (3.1.2))  

A = Restrr/Q B 

for B an absolutely simple group over a finite extension F of Q.. One has F | R ----- II F~ 

(product of the completions o f f  at the infinite places v) and A(R) = B(F|  = l-I B(F,). 

The existence of 0 as in ( I2 .2 .4)  amounts to saying that for all v but one, vl, B(F,) is 
compact (hence if v # vl the place v is a real place) and that B(F~I)~ - G, the isomor- 
phism carrying B(O) to a subgroup of G commensurable to F. I f  G is an absolutely 
simple Lie group, the place v I is a real place, F is totally real, and B is an F-form of G, 
F being identified with a subfield of R via v~. 

(x2.2 .5)  Assume that G is absolutely simple non compact.  In our application, 
it is PU(I ,  N --  3). By the Borel density theorem, any arithmetic P in G is Zariski 
dense. I f  A----Restrr/Q Bis  as above, with F f i R ,  B an F-form o f G ,  a n d P  a sub -  
group commensurable to B(OF) , then by ( I2 .2 .  i), ( I~ .2 .2)  F DE and the F-form B is 
deduced from the natural E-structure of G defined by F. For all the real places v of F 
above the identity embedding of  E, the G(F~) are isomorphic, hence non compact. 
There can hence be only one such v. Hence F = E. We conclude: 

(x2.r Assume G is an adjoint connected absolutely simple non compact Lie 
group. Then a subgroup PC G is arithmetic if and only if 

a) the field of traces E is totally real; 
b) for each embedding a of E in R distinct from the identity embedding (~ (R) 

is a compact group (i.e. the real group G @E.o IR deduced from the natural E-structure 

of G is compact). G being as in ( I2 .2 .4)  ; 
c) r is commensurable with G(OE). 

(x2.2 .7)  Let G be an adjoint connected absolutely simple non compact Lie group, 
and let 1-' be a lattice in G. Assume a totally real number  field F C R, and a form G r, 
of  G over F are given, such that a subgroup of finite index of F is contained in G(~F). 
Then the field E = O [ T r A d  F] is contained in F by ( i 2 . 2 . I ) .  

Corollary (x2.2.8) .  - -  A lattice F C G is arithmetic in G if  and only if, for each embed- 
ding ~ of F in R, not inducing the identity embedding of E in R, the real group G F | R is 
compact (i.e. ~ is a compact group). 

real, 
and 

Proof. - -  Since E C F, a) of (12.2.6) is implied by the assumption that F is totally 
By ( I2 .2 .2) ,  the given F-structure of G is deduced from the natural  E-structure 

PC G(E). The condition in (12.2.8) amounts to b) of ( I2 .2 .6) .  Assume it 
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holds. Then, G(0~) is an arithmetic lattice in G(R). A subgroup of finite index in F 
lies in G(E) c~ G(OF) and hence G(OE) contains a subgroup F' of  finite index in F. 
Both 1"' and G(0g), being lattices in G(R), have finite covolume; hence the index of F' 
in G(0~) is finite. Condition c) of (~2.2.6) follows. 

The criterion (x~. ~.8) will be applied to test the arithmeticity of I'~ in PU(V, +0). 

(22.3) We shall need more explicit information about monodromy than given 
in (9.2) in order to compute Q,[Tr F',], where 1"'= is as in ( I2 . I . 2 ) .  The result 
needed is (i 2 .5 - i ) .  Actually, by consulting the explicit lists in w I4, one can obtain the 
required information in a case-by-case inspection except in three of the cases. 

For the remainder o fw 12, weassume  o <  ~t,< i and ~t, eQ ,  for all s e S .  
Let S = S x u S 2  with cardS2 = I, let Ta, T~. be trees as in (2.5) with the 

vertices of T~ in S~ (i = 1, 2), and let [~:T l n T  2 ~ P  be an embedding with [ 5 ] S = o ,  
the base point of M. 

Without loss of generality, we can assume that T ,  is homeomorphic to the interval 
O < ~ X <  I.  

Fix an orientation on Tz, let sa, . . . ,  SN_ ~ denote the vertices of T x taken in order, 
and let ai denote the oriented edge from s~ to si~. t (I < i < N -- 2). Let "F denote the 
cone over T 1 n T 2 with apex ^ and denote by ~ also an extension of ~ to an embedding 

of "F in P. Since ~ " -  {sx, . . . ,  ss} is simply connected, the pull-back [~" L may be 

identified with the constant system C on it, and we can choose l(ai) e H~ [~" L) for 
each i so that 

(x~.3. z) t ( a , ) . ~ 3 1 a , ~ - - ~ . f 3 1 ~ + ~ . f 3 [ ~ + 1  , ~ < i < N - - ~  

where ~ is the arc from ^ to s~ and ,~ denotes homology. Let w, denote the element 

in H~(Po, ~,(~)) determined by t(a~).~la~; then as in (~.5) {w~, . . . ,  WN_z} is a basis. 

Let ~,~.~ denote the monodromy effected on H~(Po, L) by moving o(sj) along a path 
close to ~(Ta) disjoint from ~('F) w D, except at its initial point, where D, is a small 
disc centered at o(si), then making one positive turn around 0 D,, and then retracing the 
path to o(~). 

/,emma 
Then 

and 

( x 2 . 3 . 2 ) .  ~ Set 

W0 = ~1 ~'2 Wl,  

w 0 

w', 

w~ 

w; 

w~ 

W0 = ]'1,2 /Ok and w'k = y, .3wk, k = x, . . . , N -  2. 

= ~ , ( x  - ~ , )  wl  + w , ,  

= wk, k > ~, 

= ~3 w~ + ~2(~3 - I) w , ,  

= = ,  ~3(~ ,  - I)  w l  + (~3 ~1 - ~3 + I) w2,  

= ~2 ~3(I  - ~1) wl  + ~3(I  - ~1) w ,  + w3,  

= w ~ ,  k >  3. 

if N - - S >  I, 
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Proof. - -  Let c denote the unique element in the $2. Introduce the local system L(c) 
of  (3.15) on PMc,)" Without loss of generality, we can assume that our base point 
oeM(c)  i.e. o(c) =-oo. 

Set d = 6(^). Without loss of generality we can choose the embedding ~ of~" so 
that inf [d --  o(s)] > 3 diam 0($1) (here we are identifying P with P via a coordinate z 

sES,  

as in (3. I5)). 
The effect of  horizontal transport of{ wx, . . . ,  wN_ 2 } under variation of embeddings 

of S in P is given by an isotopy o f P  (cf. (3.6)). In  particular, yij  arises from an iso- 
topy {~,j; o < t < I } of P which twists o(si) one positive turn around o(s~) along the 
path described above; here ~o  = identity and ~t,/[ 0(S) = identity. The isotopy ~, 
can be performed so that the only points which move lie in a disc containing 0(Sa) of 
diameter less than 2 diam 0($1). Since under the isotopy no point of0(Sx), turns around d, 
one sees by inspection of the definition of L(c) that the restriction of the dual local 

system I,(c) to the subset { ( d •  ~ j0(S1)) ;  o < t <  I} of PMcc) has a trivializing non- 
zero section ~, I ~ i , j <  N -  i. Consequently, for each i , j ~  N - -  i, ~'(d) returns 
to its initial value after horizontal transport via t ~.j,  o < t <  i. 

, t U Set Vk=E.~['~ k and Uk=~]i,j(k), I < i , j , k < N - - I .  In view of (I2 3.I), 
w~ ~ --  v~ + v~+ 1 when the section ~" is taken to have the same value on d as the section 
denoted t in (12.3. i) ; we choose k" in this way. The argument  above shows that the 

initial segment of the ~, valued singular chain v k is unchanged by the mao aq~j, 
I < i , j , k < N - -  I. 

{#0[ " "'''. 

/ 
b) 

d 



The effect of  the isotopy B corresponding to y~,~ is pictured in diagrams a) and b). 
Let " ~  " denote " homotopic in Po " Then 

v~ ~ v~ + ~ ( I  - ~ )  w~ - ~3 ~ wl 

t V~"~ Va 

Consequently 

v~~ v k for k >  4" 

~2 ~8(I - ~;) w; + ~3(x - ~1) w= + w3. 

The second part  of ( I2 .3 .2 )  follows at once. The proof for 71,2 is similar. 

( t~ .4 )  For N = 4, calculations as above yield for matrices with respect to the 
basis { wx, w~} 

I I - -  rr  3 ~ 

and we easily verify that 

( ~ . 4 . x )  ~'~,~.'r~,~.'r~ = ~1 ~ ~ .  

This shows that our lift 0' : ~ (M(c ) ,  o) ~ U(V) of  0 : ~t~(Q, o) ~ PU(V)  cannot be 
factored through ~a(M, o) ~ U ( V )  if ~4= x/~, since the center of  ~I(M) is 

~ ( P G L ( ~ ) )  = Z~. 
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Lemma (x~.5) .  - -  As in ( i 2 . i ) ,  set r = Q(~ /~)  and r~ -- I m 0 ' .  

( z~ .S .Z)  Q [ T r  r ' ,J = F 

(x~ .5 .~ )  Q,[Tr  Ad F'=] = F r~ R / f  card S > 4. 

Then 

73 

Proof of ( z2 .S .x ) .  ~ By ( I 2 . I . 2 ) ,  

tains 0t, =,,, for each distinct pair s, s' ~ S. 

is the least common  denomina to r  of  { ~, q- ~,, [ s, s' ~ S, s = s'}. 

elements sx, s=, sa of S, we have 

~ , , -  ~,,, = (~,, + ~,,) - ( ~ , ,  + ~,,). 

Hence  for any  distinct s, s' in S, Q [ T r  1"'~] contains %, 0t, ~ .  

We choose a basis {Wl, . . . ,  WN_~.} in H~(Po, I'.) as in ( I~ .3) .  
as matr ix  with respect to this basis the upper  ~ • ~ diagonal  of  

Q [ T r  P'=] c F. By (0.2) O [ T r  1"'=] con- 

It  follows tha t  O ( T r  V',) D O (~/7) where n 

For any  3 distinct 

Then  Y~,s.Y~,s has 

0t2(~30-- I) 0~3~1 --O~3 + I ~3(I ~ ~1) OI . 

The  diagonal  terms of  the product  are 

~ , " ,  ~ 1 ,  . . .  - (~1  - ~ ) ( ~ 3  - ~) + ~ 3 ~ 1  - ~ + ~,  i ,  . . . ,  

therefore, for any sl, s~,s 3 ~ $1 we get 

T r  y~,s3'~. 2 = = l ~  ~3 + ~ + N -- 4 ---- ~a (~  ~a + x) modO_,. 

Hence ~; ~ O_,[Tr 1-"=], provided tha t  ~9. % + -- x for some s2, s~ ~ S x -- {h  }. This 

proviso fails only if  ~t, = I/4 for all s in $1; in this case, replace S x by a part i t ion T 1 
with card T 1 = card S~ (cf. (6 .2 .  i)),  and in the corresponding subgroup of  1-"=, the 

proviso holds. I t  follows that  0c, ~ Q [ T r  F'~] for all s ~S.  This proves (x2 .5 . I ) .  

Proof of (x2 .5 .2 ) .  - -  Set E 
span of  the automorphisms In t  3' 

and V is as in ( i2 .1 ) .  Let  o 
for any  g ~ GL(V) ,  it follows by definition of E that  for any 3' ~ F'~ 

(x2 .5 .3 )  T r ( I n t  03') = ~  3') = T r ( I n t  3'). 

I t  follows f rom this tha t  

(x2 .5 .4 )  Int 3' -+ ~  3' extends to a C-linear map  q~ of  d .  

For Ec v 3 ' = o  with c v e C ,  3 ' e I n t P ' ,  implies tha t  for any { d r } w i t h  

Tr(Zcv 03') (Edv ~ = Tr  Y.c v d v, ~ 

= Tr  c v dv,(y't" ) 

= ( T r E e  v Y ) ( E d  v3') = o .  

= Q.[Tr Ad F'=] and  a~' = C[Int 1"%]: the C-linear 

:m  -+ymy -1 wi th  y e / " , ,  where m e H o m e ( V ,  V) 

Gal (F/E) .  I nasmuch  as T r l n t g =  I + T r A d g  

d ~ C ,  

7J 
I0 



74 P.  D E L I G N E  A N D  G.  D.  M O S T O W  

The  group  In t  r ' ,  is Zariski-dense in In t  GL(V) .  Consequent ly  ~r coincides with 

the C-l inear  span of  Int  GL(V)  ; thus ~ is an associative a lgebra  acdng  i r reducibly on the 
subspace S~ of" t race o elements in H o m e ( V ,  V) and  stabilizing the line C . I .  Since a 
field au tomorph i sm preserves Zariski-density,  the C-l inear  span of  ~ r", is also ~ .  

Therefore  

T r ( (Zcv~  = o for all m E.~r 

Since Tr  is non-degenera te  on ~1 it follows that  Ec v ~ = o. This  implies (12 .5 .4 ) .  

Clearly q~ preserves products  and  is an a lgebra  isomorphism. Since 
.~1 ..~ Home(5~' , oq'), ~1 is a simple associative algebra.  The  map  ? is an a lgebra  iso- 
morphism and therefore q~ maps  In t  GL(V)  isomorphical ly onto the Zariski closure 

of  In t  ~ which is also Iu t  GL(V)  T h a t  is, ~ stabilizes In t  GL(V) .  Consequent ly ,  
there is an S ~ GL(V)  such that  for all g ~ G L ( V )  either 

(i) 9 ( I n t g )  ----- I n t S - Z g S ,  or 

(ii) q ( I n t g )  = In t  S - '  tg-a S. 

For  any  g e G L ( V ) ,  I n t g  ~ g| where  ~ denotes  equivalence of  repre-  

sentations, and for any  g e U(V ,  +), the uni tary  group  of  some hermi t ian  form ~ in V, 

tg- l  ~, ~. 

Consequent ly ,  for any y E [", and  ~ E Ga l (F /E) ,  

~ | ~fC,~ ~ 1 7 4  ~( In t ' r  ~, t I n t y  
t 

Y| 

" J  = = " ~ l i n t  ,~ = ,~ |  

I t  follows at once that  

/ )'(Y) u in Case (i) 
Oy 

~,(y) ~ in Case (it) 

for all y E F~ where  X ( y ) ~ C .  
assume that  we are in Case (i). 

all y ~ P'~, 

~ = S - '  - r .x(y)  s .  

From ~ Y,) = ~176 = S-1 Tt Y, ;~(Yt) ~'(Y,) S, we 
mult ipl icat ive homomorph i sm.  For  any y such that  

Composing  ~ with complex  conjugat ion,  one can  
Then  there is an e lement  S ~ G L ( V )  such tha t  for 

t infer that  ;~ : I'~ -+ C is a 
y -  i has rank I, ~y has 

the same proper ty  and  therefore ;~(y) = i if d im V > 2. Since I ' ,  is genera ted  by  

pseudo-reflections ( ( io .  19.4) , ( I I . 2 .  I)),  X(I"~) = I and ~ y = T r y  for all y ~ I",, 

i.e. ~ = I. This  proves ( I 2 . 5 . 2 ) .  

We close this section with a descript ion of  the field E = Q, [Tr  Ad P'~] in the case 
N = 4 ,  with ~ satisfying o <  ~t,< I for all s E S ,  Y. I~ ,=2 ,  and condi t ion ( INT) .  

In this case, setk,  = (t --  ~q - -  ~i) -1, I ~ i 4 : j <  3. Assume k ~ >  o (cf. w r4 .3) .  
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Proposition (t~,. 5.5).  

E Q [cos" ~ ~ = - -  COS 2 -  C O S ' . - - ,  

l k 1 2 '  k ' .  3 ' k31 

Proof. - -  We have I'~C PU(x, ~). Thus 

cos  cos  cos 

Ad F~ = Ad F~,C S0(2,  i, R). Let 
A = A(kx2 , k~s , ksx ) denote the group generated by reflections in the sides of the geodesic 
triangle in the real hyperbolic 2-space Rh 2 whose vertices are fixed by the monodromy 

transformations Y12, Y'.s, Ysl (el. (z 2.3) and ( 12.4. x)), and let A 0 denote the subgroup of 
orientation preserving elements in A. Then Ad I'~C A0, card(A/A0) = 2, and Ad P, 
is of  finite index in A. 

Let (u,  v} denote the Killing form on the Lie algebra LP of PGL2(C), and let 
e i be an element in .LP with (e~, e~) = I such that (in the projective model of 1~'.) 

rc 
e/L contains a side of the above geodesic triangle (i = z, 2, 3), and (ei, e.~> = --  cos -- 

k~j 
if i # j .  Let  e~. denote the element of the dual space of ~e such that e'~(v) = (v,  ei } 
for all v e ~ (i = z, 2, 3). Then the three generating reflections of A have the form 
s~= x - - 2 e ~ |  x ,2 ,3)  and 

= ( ,  - e;) = (-- II  e,;, | e:.; ,  
j ~ l  k = 0  r  

h < h  ... <~k 
k 

T r s q . . .  s# = ~] (--  2) k l-[ c,. ii Jk+, = J ,  
k = 0  c t= l  .tot ~t+~' 

7~ 
, < _ i + j < 3 ,  where cq = - - c o s ~ ,  

I, i = j .  

From this it is clear that Q,[Tr A] is the field E' on the right side of ( I2 .5 .5) .  Suppose 
now cr : E' -+ C is a monomorphism fixing each element of E. By the argument used in 
( z 2 . ~ .  I) (ii) for any y e A and x c A d  I ' , ,  y - l ~ y  is in the centralizer of SO(2, I, R). 
H e n c e y - ~ = ~  z and ~ = + y .  It follows that ~  B u t y e O ( 2 ,  x) 
has determinant 4- t and this value is fixed by ~r. Therefore ~r = y  and ~  = T r y  
i.e. a fixes each element of E. Consequently, E = E'. 

(x2.6) Assume c a r d S > 4 .  Let {~t, l s e S }  be a family of numbers o <  ~t,< I 
satisfying condition (INT). By Lemma (3. z2), ~t, is a rational number  for each s. By 
Theorem (zt .4), the group I'~ is a discrete subgroup of finite covolume in PU(V, +0) 
where V = Ha@o, Lo). Set E = Q,[Tr Ad 1",], F = Q,(~/T) as in (T2.x). 

Proposition (x~,.6.x). - -  I ' ,  is arithmetic in PU(V) ~ and only i f  for  each a e Gal F 
whose restriction on E is not the identity, ~ is a definite Hermitian form on ~ 

Proof. - -  Let G = PU(V, d/0 ). Inasmuch as the complexification of G is the simple 
group PGL(V),  ( x 2.6.  z) is essentially a restatement ofthe arithmeticity criterion (z 2.2.3) .  
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Proposition (x2 .6 .2) .  - -  Assume card S > 4. Then F~ is arithmetic in PU(V) / f  and 

only i f  for each ~ ~ Gal F with ~ , identity or complex conjugation, ~ is a definite Hermitian 

form on ~ 

Proof. ~ This follows at once from ( I2 .6 .  x) and (12.5.2) .  

Proposition (x~,.6.3). - -  Assume card S = 4 and ~ satisfies condition (INT).  Set 

-- det(<ei, ei)) : det 

I C12 C31 ~ 

C12 I C~3 I 
\C31 C23 

where % = - - c o s - - ,  x < i , j < 3 .  Then F, is non-arithmetic in PU(V) i f  and only i f  ki j -- __ 

~ ~ o for some cr e Gal E with ~ 4: x on E. 

Proof. - -  We have 8 = I - -c~2--c22a--ql--2c,2cmc~, ,  and thus S e E .  
Moreover, ~ > o implies that the matrix ~ ei) is positive definite since all its prin- 
cipal minors are positive. From this (i 2 .6 .3)  follows. 

Criterion ( I2 .6 .3 )  applies to the index 2 orientation preserving subgroup of a 

group generated by reflections in the sides of a geodesic triangle in the real hyperbolic 

2-space, a so-called " triangle group ", cf. w 14. 3- One can deduce from (~2.6.3)  that 
at most a finite number  of  triangle groups are arithmetic. A complete list of  these 
groups was given by K. Takeuchi in [2I]. 

Proposition ( x ~  . 7 ) .  - -  For any b e Q, let ( b ) denote the fractional part orb i.e. o < ( b ) < I 

and b -- ( b ) e Z.  Let ~t -----{/z, [s e S }  satisfy condition (INT) o f ( 3 . x i )  and let d denote 

the least common denominator of ~. Then I'~ is an arithmetic lattice in PU(V) / f  and only i f  

(x2 .7 .1 )  for  each integer A relatively prime to d with I < A < d -- I, 

~] (A~z,) ---- I or card S -- i. 
I 

Proof. - -  Let A be an integer relatively prime to d and let ~ be a primitive root 

of unity of  F = Q , ( ~ q ) .  Then aA: r  cA is an automorphism of F which is non- 

trivial on F n R if and only if A ~ • I (modd) .  The automorphism a A sends the 
local system with monodromy ~ to the local system {exp 2hi (A~z~ [ s e S}. By 
Corollary (2 .2I) ,  the hermitian form ~ has signature 

( Z  (A~t,) --  I, Z (I --  (A~t,)) --  I). 
$ J 

The proposition now follows from ( I2 .6 .2 )  and ( I2 .5 .2 ) .  
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(x2.8) Let P be a subgroup of GL(n, Z) and let G denote the Zariski closure 
of P in GL(n). Then G is an algebraic group defined over Q w i t h  the property 

(12.8.x) Any Q-character X of the connected component  G ' of I in G is trivial. 

(For x(P n G c) is Zariski-dense in the connected subgroup z(Gc(C) of C', and it is 
finite because it has bounded denominators;  hence z(G *) = (i).) 

By a well-known theorem of Borel-Harish Chandra,  G(R)/G(R) n GL(n, Z) has 
finite Haar  volume [3]. Consequently P is an arithmetic subgroup in G(R) if and only 
if P is commensurable with G(R) r~ GL(n, Z) or, equivalently, F is of  finite covolume 
in G(R). 

(x2.9) We consider now an algebraic family X defined over O of curves of the 
type described in (2.23). We describe an example. 

ns Let t*, =, M be as above, let t*8 = ~ with d the least common denominator for 

{tz, l s e S } .  Fix a,b, c e S .  Then for each m e M ,  there is a unique isomorphism 
p ~ p l  mappingm(a) ,m(b) ,m(c)  respectively to o, I, OO. Let u : P • 2 1 5  be the 
resulting map. Define 

(x2.9.x) X:{ ( v , u ,m)  e P • 2 1 5  I-I (u--m(s))"Q. 

Let n2, ~3 denote the projections of X onto the second and third factors respec- 
tively. Set X,, = n~-l(m) and denote by n,, the restriction of n, to X,, for any m e M. 

More generally, let r~:X---> M be a fiber bundle over M (i.e., a topological 
product over small open sets of  M) satisfying 

(x2.9 .2)  For each m e M, n- l (m) is an irreducible abelian cover of P, with 
covering group G, ramified only at m(S) of orders dividing d. 

Set X , , = n - l ( m )  for any m e M .  Then {HI(X, , ,Z)  [ m e M }  is a local system on M 
corresponding to a homomorphism ~: nl(M, o) ~ Aut HI(Xo, Z). 

Set P = ~(7~x(M , 0)) ; we call P the Hl-rnonodromygroup of the fibration. Moreover 
the Galois group ff acts fiber by fiber on X and commutes with horizontal transport 
of  Hi(X,,,  Z). Consequently, ff commutes elementwise with F. We thus obtain a 
direct sum decomposition 

(x2.9.3) Hl(Xo, C) = 0 Hl(Xo, C)x 
X 

whcre Z rangcs over ~, thc set of characters of  ~. The group ~ is a quotient of  
(Z/d)S/(Z/d). In the case of (12. 9. x), fr = Z/d. 

Let g, e ff be the natural generator of the inertia ( =  decomposition) group 
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at s (cf. (2.23)). Then  there is a unique X e ~ with x(g,) = % for each 
by (2.23 . I) 

HI(X~, C)x ---- Hx(P,,, Lx) for each m E M. 

The  vector space HI(P,,, Lx) is defined over the field Q.(~/Y) 
of integers by ( I 2 . I . 3 ) .  

s e S  and 

and even over its ring 

(x2 .9 .4)  Set F = Q , ( . ~ ) ,  v =HX(Po,  Lx) , W = V |  = ~) ~ whereeo 
o E G d F  

is a primitive idempotent  in C | F, ~ ~ eo W, and (I | v) eo = e~o for all a, -~ e Gal F. 
The  space W is defined over ~ and we have 

W ( Q )  ~ ~ H'(Po,  Lox(F)). 
o~GalF 

(x2 .9 .5)  Set W(Z) = O HI(Po, LOx(0)) where 0 denotes the ring of integers 
o~G~IF 

of F. The  monodromy group F of  the fibration stabilizes HI(Po, Lx(0)) for each cha- 

racter ~ e ~ and in particular stabilizes W(Z). 

Lemma (x2.xo).  - -  Let ~ :  X - - * M  be an algebraic fiber bundle satisfying ( i~ .9 .2)  
and with non-trivial ramification for  each s ~ S. Let F denote the Hl-monodromy group of  the 

fibering, let G be the Zariski-dosure of F in Aut HI(Xo, C). I f  F is of  finite covolume in G(R), 
then in the euclidean topology Fx, the projection o f f  on Aut V is dense in U(V, J/~), where Z and V 

are as in (i 2 .9 .4) ,  ~b~ is as in ( i 2. i . i ), provided there is ac r  e Gal Q, (.~/I) with ~ indefinite 
and or* • i. 

Proof. ~ Suppose that  G(R) /F  has finite Haar  volume. Then defining the integral 
structure on Ha(Xo, C) as HI(X.o, Z), we infer that  F is commensurable  with 
G(Z) = G c3 AutH~(Xo,  Z) by (I2.8) .  Inasmuch as W is a F-stable subspace defined 
over O ,  it is also G-stable and the restriction of G(Z) to W is an arithmetic subgroup. 
Consequently Fw, the restriction of F to W, is arithmetic. 

By (I2. x .3), Fx C U(V,  ~/o), and indeed the Zariski-closure of r x contains U(V) 
and even SL(V)-- th is  last fact can be verified by comput ing the Lie algebras of the 
Zariski-closures of {y"; n E Z} where ~" ranges over the pseudo-reflections of F x. 

Set F = Q,(~/~). We can regard U(V,~/o) as the group of R-rational 
points of  an algebraic group U defined over F r y R ;  namely as the subgroup 
{ (x, ~) Ix ~ U(V,  ~b0)} of Restrel R GL(V).  The  subgroup F x then becomes a subgroup 
of Aut  HI(Po, Lx(O)) • Aut  Hi(Po, Lax(O)) and is thus commensurable with U(O n R).  
By hypothesis, the group U(~ ~+r = ~ is not  compact  because the hermitian 
form ~ is indefinite. I t  remains to explain why U(O n R) is topologically dense 
in U(R) if I ~ ~ ~ Gal(F c~ R / Q ) .  This assertion is an immediate  consequence of the 
weak approximation theorem for algebraic groups over an algebraic number  field, 
which applies here since ~ is not  compact  (cf. [I I], p. I92 ). 
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Theorem ( t2 .xz) .  ~ Let X be the algebraic family (12.9. I) and let F be the Ht-mono - 

dromy group of thefibering. Assume that ~ satisfies condition (IN'T) of (3.11). I f  F is of  finite 
covolume in its Zariski-closure G(R) in Aut HI(X0, R), then I" z is an arithmetic lattice in U (V, hbo). 

Proof. - -  By Theorem (io.  9. i), F x is discrete in U(V, hb0). It  follows at once 

from the Lemma (I2. Io) that for all ~ e Gal(Q.(~,ff)/Q,) with o 4= 4- i, ~ d?,) is 
compact. It  follows from (I2.2) that I' x is arithmetic in U(V, +0). 

(x2. t2)  The foregoing results show that F x is arithmetic in U(V, hbr) if and only 
if F w is of finite covolume in its Zariski-closure in Aut W(R).  

x 3. EIHptic and  Eucl idean Cases  

The investigation of the map ~ : Q.~t -+ B(~)o can be generalized to obtain a 
class of elliptic and euclidean groups which generalize the stabilizers in I'~ of points 
in B(000 + and on its boundary. We shall merely sketch the method. 

(t  3. t ) Elliptic Case. 

Let Vq = (~,),~s, satisfy 

a) Vt, > o, 

b) Z ~ , < ~ .  
s E S t  

Augment Sl by adjoining an additional element c and set S = S 1 u {c}. Set 

bt, --- 2 --  2~ ~t,, ~t = (~,) ,es.  Fix a local system L on P - -  S with monodromy 
s~8 ,  

(~ = exp 2~it~. By (2.2x) (in which ~ must be replaced by ~, --  i) the intersection 
form ( , ) is negative definite. Fix a e St, take as moduli space M the set of  injective 
y E p S  with y(a)  = o ,  y(c) = o o  and set 

M,t = { y  e P  s ly(c) = oo, y(a)  ---- o ,y (S t )C  P --  oo}. 

On the family of punctured lines PK, t we extend L trivially on each R + near oo and 
by monodromy ~ along each Pv, Y e M,t. Fix 0 E M. Let l~I denote the covering of M 
corresponding to the monodromy of HI(Po, Lo) , and let ~I,t denote completion of the 
spread l~I --+ M over M,t. The section 

y --+ w v = l l  (z - - y ( s ) ) - ~ , d z . e  
a * e  

gives a map 

~ : ~'~ -+ HI(P0, L0). 

This map is homogeneous of degree 1 -- ~ bt0 relative to the action of the multiplicative 
$:#= 

group G,~ (y  ~-, Xy) on M,t. By (3.9) the projectivized map is etale on M. Hence ~ ,  is 
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itselfetale. Apply the reasoning of  sections 8, 9 and Io replacing the compactness ofQ.8, t 
by the compactness of Mst-(zero map of S1)]G,, together with the homogeneity. We 
then get 

Theorem (x3.x .x) .  - -  I) ~ extends to a map 1~I~t -> Hx(Po, Lo). 

2) I f  ~z 1 satisfies ( INT):  for all s +  t in S1, (I - -  ~ - -  ~h) - I  ~ Z, then the extension 
of  ~ is an isomorphism. 

Corollary (x3.x .2) .  - - I f  ~t x satisfies (INT), then the monodromy group F,  is a finite 
subgroup of  U ( N  --  2), N = card S 1 and HI(Po, Lo)/I" , ~ M,t. 

Remark. - -  The fact that Ha(Po, Lo)/U ~ ~ C "~-2 comes from the fact that U~ is 

generated by pseudo-reflections (cf. [4] (V.5 .3)  thdor~me 3). 

(I  3 . 2 ) Euclidean Case. 

Let ~t 1 ----(~t,),es, satisfy 

a) ~, > o, 

b) E ~ , = i .  
sGSt  

Augment $1 as above, setting S-----S1u(c},  ~t~----2-- ~ ~ q =  I, and fix 
a c S  t . Define ~ ~s' 

M~t = (y  e ps  ly(c ) = oo, y(a) = o, y(S1) C P --  oo, y(Sl) =1: (o}}. 

Set Q.~t -- M~t/G,,; it is compact. We define L on P~t and define w v as above. The 
local system L has no monodromy at ~ .  Accordingly, we set S ' -  {c} and work 
with H~Is,)(Po, Lo) , cohomology of P --  o(S) with support in the family q~(S') of subsets 
of  P --  o(S) closed in P --{oo}) .  By (2. I5.2),  w u represents a non-zero cohomology 
class in H~/s,)(P~ Lo). For all y ~ PM, one has Resoo(wu) = i, the unit element of 
the local system L which is trivial near oo. Inasmuch as 

(cycle  around 0% w~) = x 

1 for all y E P~, the image of  the map ~ ,  : M -+ H~Is,I(Po, Lo) lies on an affine hyper- 
plane H. This hyperplane H on which wy lives is parallel to the homogeneous one given 
by (cycle  around 0% ) o. This vector subspace of ---- H~Is,I(Po, Lo) can be iden- 
tified with HI,(P -- o($1), LI) where L 1 is the local system on P -- o($1) with mono- 
dromy [z 1 (or equivalently with Ha(p  -- o($1) , Lx) by (2.6)). The intersection form 
on H I ( P  -- 0($1), Lx) is negative definite by (2.2I) .  

The map y ~ wu is homogeneous of  degree o for the G,, action and therefore defines 

a m a p  ~ : Q ~ H .  

Theorem ( x 3 . ~ , . x ) .  - -  I )  ~ extends to a map ~ of  Qst "---> H. 
~) I f  ~t 1 satisfies (INT),  then the extended ~ is an isomorphism. 
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Corollary (x3.2 .2) .  - -  I f  ~t satisfies (INT),  then the monodromy group I'~ contains a 
subgroup of finite index T of translations of the affine space H, H / T  is an abelian variety, and 

Ps-z---- Q ,  ~ H/F~ = (abelian variety)/(F/T),  

where N = card S. 

z 4. L i s t s  o f  ~ a s s o c i a t e d  to  d i s c r e t e  g r o u p s  

(x 4. x) Elliptk and Euclidean lists. 

Set c a r d S , = N ,  assume ~ ~  for all s e S ,  and Y~ ~ , <  I. 
# ~  St - -  

s ~ t  in Se, set 

k s ,  t : ( I  - -  ~ 1  - -  ~ / ) - - 1  

D =  ( I -  Z ~~ 
# E  Be 

We assume (INT):  each k,. t e Z u ~ .  By a " miracle of small numbers  
seen that  D is an integer or oo (el. (6. Io) and (IO.4) (i)). 

Summing  the N ( N -  I)/2 equalities 

(i) 

gives 

(2) 

Hence 

(3) 

Since k,, t > 2, 

Hence 
S ESe. 

(4)  

I 

~, + ~q = I k~ 

( N - -  t) ZVt~ N ( N - -  x) Z x - -  - - .  

2 k a 

I __1 = N ( N - -  I) - -  ( N - -  I) I - -  
E k. 2 1: 

(3) implies 

I N 

D - -  4 

N < 4  and N----4 only if D = o %  k,, t = 2  
I f  N = 3 ,  (3) yields 

I I ( y I  ) 

D 2 k,. t 

(I 

For any 

" it will be 

and solving the system (1) yields 

+ i -  

I I I 
= _ (~ - E k ; . ,  ~ + 2 k ~  ~) _ (x 4.  x. x ) ~' 2 kl. D" 

m + m  

i 
for all s , t  and ~,-----  

4 

N - -  i 

D 

for all 
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(x 4 . x . 2 )  The  n u m b e r  D satisfying (4), must  be an even integer or oo. 

For if a sum of  three integer reciprocals exceeds x, the excess is an integer reciprocal  
(cf. (6. IO)). 

We list all the possibilities: 

k~ 

Elliptic 2, 2, n 

2, 3, 3 

2, 3, 4 
2, 3, 5 

Eucl idean 2, 3, 6 

2, 4, 4 

3, 3, 3 

Eucl idean 2, 2, 2, 2 

D n0 = ~z. D 

N = 3  

2?/ ? l -  I ,  n -  I ,  I 

I2 5, 3, 3 

24 Ix, 7, 5 
60 29, 19, II 

oo V'~ = I /ktu 

O0 

O0 

N = 4  

oo ~., = 114 

(x4 .2 )  Le t  N = c a r d S  and  assume that  N >  5. The  foregoing results permit  
one  to infer limitations on the possible ~ = (~t,),~ s satisfying 

x) ~ t , > o  for each s E S ,  

2) o~s[2' = 2, 

3) k , t =  ( i - - ~ t . - - t t , ) - t e Z  if ~ t , + t t  t <  I. 

Case A: for some s 4= t in S, ~, + ~tt> I. By (I 4. x), applied to the complement  
o f { s , t }  in S, we have N = 5 .  Set S = { s, t, a, b, c }. We  define D by  

I 

I Choosing [z, > ~t T h e n  t z . + ~ t b + V q =  X - - ~  and b y ( I  4 . I . x )  tz.,/z~,t~ c <  I I 
- - 2  D" 

we find t~ t+Vtu<  t for u z { a , b , c } .  

( x 4 . 2 . x )  D is an even integer (by (x4 .x .2 ) ) .  

Case B: for some s, t ~ S, ~z0 + Vt t = I. The  remaining ~z' s make up  a eucl idean ~t 1 

so that  N = 5  or 6. I f  N = 5 ,  S = {s, t, a, b, c} with ~ t , < I  and ~t t + ~ t u <  I 
2 (iii ) 

for u e { a , b , r  if ~ 0 >  ~t- I f  N = 6 ,  ~ - =  ~,, ~t, 4, 4, 4, " 
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Case C: 

t z ,+Vt~=  i - - - -  

neither A nor B hold. Here we see the N ( N - - I ) / 2  equalities 

~., yields 

(N -- i) ]~t,_> N ( N - -  I ) ._I .  
2 

I 
Hence N _ < 8  and N = 8  implies k,.~----2 for all s , t ~ S  i.e. t z , = -  for all s ~ S .  

In particular 4 

(x4.2.2) I f  (~0),~s satisfies i), 2), 3), then card S < 8. 

We explain in section t 5 how the list for N ---- 5 can be gleaned from the thesis of  
Le Vavasseur. For N > 5, the lists are easily obtainable in Case C. Arrange ~ in 
descending under  ~1--> [~2 >-- . . .  ~ t~s. Then  (cf. (6 .xo . I ) )  (t~l + ~q), ~ ,  . . . ,  t~s 
must be on the list for N -- I with ([~t + [~) --> 2 ~ .  I terat ion of this criterion leads 
to the compact  quotients PU(I ,  N --  3)/I'~ for N > 5. As for the non-compact  q u o -  

tients with N > 5, by Case B these are ~q' ~ '  4 '  4 '  4 '  ; only three solutions satisfy 

I condition (IN'r): (~, ~)= (~, ~), (~, 4)' (7, 5). 
(x4.3) The case N = 4. Let ([~)t<~<4 be a 4-tuple of real numbers which satisfy 

o <  ~ <  i, Y'Vq-----~. I f  the ~'s are arranged with [~1<__[~2<__~s<_[~4, one has 
t l x + t ~ 3 < _ t ~ 2 + V q = 2 - - ( t z t + t z 3 ) ,  hence tz1+~t  3<__I. A fortiori, t t l+Vt i<__I .  
I f  ~zz+~zs<_tzl+~t4,  then t l i + E z j ~ I  for i4=j among { 1 , 2 , 3 } .  I f  not, 
~ t x + ~ q <  i for i - ~ 2 , 3 , 4 ,  hence t z j + / z k >  r for j4=k among { 2 , 3 , 4 } .  One  
goes back and forth between those two cases by the transformation ~t~ = I -  ~/./, 

followed by the relabelling i ~ 5 --  i. 
I 

---at- ~ 3  = 1 - -  - - ,  [3. 2 __-]- [3. 3 = 1 - -  --  
q 

1( , 

(x4.3.x) 

I (  I 
~,=~ I - T + - -  

i (  i 
~=~ x +p 

[3.4 = ~ I - { - 7 -  { - 

I 
w e  r ' get 

q 

q 

q ' 

q 

I 
In  the first case, if we put  ~1 + ~2 = I - -  - -  p' 

these formulas provide a solution of (INT) for each triple of positive integers [p, q, r] 

satisfying ~x + qI "~- rI __< I, I <~ p --< q < r < oo. The  [~; ---- i - -  ~i are given by the 

same formula, with lip, i/q and x/r replaced by their negatives (see ( I4 .3 .2 ) ) .  All 
solutions of (INT) are obtained in this way. 
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If  L is a rank one local system on P~ minus four points with monodromy 
=exp(2nipt),  the dual local system has monodromy 0t -~ =exp(2ni~. ') ,  with 

~t~ = I - - ~ .  The vector spaces HI(L) and Hi(L) are in duality. As they are of 
dimension 2, this duality provides a canonical isomorphism between PHa(L) and PHi(L): 
to a line in HX(L), one associates its orthogonal in Hi(L).  On Q,  this gives a canonical 
isomorphism between the flat projective line bundles defined by ~ and ~'. Via this 
isomorphism, the holomorphic sections w~ and w~,, are identified; for both w~ and w~,, 
are of the first kind, and < w~, w~, >, given by the integral of  the exterior product of two 
holomorphic differentials is o; cf. (2. x8) and the computations in (2.19). In view of 
this identification, we will limit ourselves to the second case, with ~t's given in descending 
order by 

04.3.2) 

with 

, (  i , :) ~1=~ ~ + } + q  
i (  i 

v 4 = ~  x + p  q 

i (  i i + ; )  i- +q , 

, ,  ;) 
~ t , = ~  I P q , 

I I I 
- < I .  ,<p<q<r<  oo, ~ + q +  

For such a system of ~'s, Q.,~t can be identified with the space of y : { t, 2, 3, 4 } --" p1 
with y(x) = o, y(2) = x, Y(3) = 0% i.e. (using x:  = y ( 4  ) as coordinate) with pt.  
The multivalucd map w admits as projective coordinates the integrals (dropping the 
primes from ~') 

f z-"'(z - x) -"'(z - x) ~ ~ d z  ~ 

In his cited paper [2o], Schwarz proved that the multivalued map w induces a 
bijection from the upper half plane Im(x) > o to a geodesic triangle in the hyperbolic 
ball B(a) + with angles n/p, n/q, =It. It  is of interest to deduce this classical result from 
the theorems proved in this paper. 

To begin with, w is fitale (Prop. (3.9)) and has the local behaviour described 
in w 9.6 near o, I, and oo. 

Next we show that w maps each of the segments ~1 = ] - -0% o[, x2 = ]  o, I[, 
and x 3 = ] x, ~ [  to circular arcs in B(~)+. It  suffices to prove this for ] - -  ~ ,  o[, since 
the segments are permuted by o ~ I ~ co ~ o. 

Take x near ] - -  0% o[ and as homogeneous coordinates for w(x) the integrals J:  

and f 7  with the principal determination of the integral. In these coordinates, 

w(~) = w(x)-. Independently of coordinates, we get w ( s  aw(x) for a an anti- 
holomorphic involution of p1 i.e. a Schwarz reflection. I t  follows that w(] --  oo, oD 
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lies on the fixed point set of a, a circular arc. Consequently, w induces an injective 
map of the real axis to the boundary of a triangle in p1 with circular arcs which lie in B(~) +, 
and the map w has a holomorphic extension to the upper half plane. From the fact that 
the map w is 6tale and has image in B(~)+, it follows by a maximum modulus argument  
that the w-image of the closed upper half plane is the closed triangle A lying in B(,) + 
with the given circular arc boundary. That  w is a bijection follows from 
Theorem (io.  I8.2) (whose proof simplifies vastly for N = 4). 

We show finally that the circular arcs are geodesic lines in B(a)+. Regarded as 
a single valued map of Q.,,t, w is a ~x(Q, 0)-equivariant map. Set c, = w(~'~), using 
the determination ofw described above, and let a, denote the reflection in c, (i = I, 2, 3)- 
Then a~ aj is a holomorphic self-map of p t  with a, aj w an analytic continuation of w 
regarded as a multivalued holomorphic function on Q .  Indeed if i ~ j ,  a~ a i is the 
xnonodromy in F~, corresponding to one turn of x around Oc~ c~ Oc t.  Consequently 
{a~ aj; i <: i < j < 3} generates B(a) + ---- r~(A u at A), and the group generated 
by {ai; i = I, 2, 3} is I~, u a 1 r , .  It  follows at once that a lB(~ ) ~ = B(a) +. Henceax 
is an isometry of B(~) +. Consequently ct is a geodesic line. Since our argu/nents persist 
under permutation of indices, all the sides of A are geodesics. 

To sum up, 

(x4.3 .3)  The 4-tuples ~ ~ ~2 <: ~s_< ~t, satisfying o <~ ~ <  i and ~ ~ ---- 2 

correspond pairwise to triangle groups [p, q, r] with x < p ~ q < r < 0% the pairs 
being related by V~_~= i--Ez~, i =  1 ,2 ,3 ,4 .  [z and ~' coincide only if r = o o .  

(x4.3 .4)  For any N_>_ 4, the monodromy representations of ~l(O~, o) corres- 
ponding to the pair (~z, [z') are contragredient, but for N ---- 4 these two representations 
are equivalent via the canonical isomorphism of pHI(L) to PHI(L). 

(x4.3 .5)  Complex conjugation maps L to L and induces a semi-linear isomor- 
phism ~ of Ht(I.,) to HI(/,) which maps H~ to H~'~ IdentifyingPHt(L) to PHi(L) 
via the canonical map, the map ~c induces the anti-holomorphic reflection of p1 in the 
boundary of the ball B(a)+. It  is only for N = 4 that the complement of the closed 
ball in P'~-* is again a ball. 

(x4.4) We list below all solutions for ~ satisfying condition (INT) where o ~ ~, ~ 
for all s, Z [ z , = 2 ,  and c a r d S > 4 .  Set 

N = card S, 
d = lowest common denominator of ~ = ([z,),es, 
n,  = d ~ , ,  

NA = non-arithmetic (cf. ( ~ .  7- ~) for criterion), 
oo means that PU(1, N -  3)/P~ is not compact. 

No entry in the last (resp. next to the last) column indicates compact quotient 
(resp. arithmetic lattice). 
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I 

2 

3 
4 

5 
6 

7 
8 

9 
I O  

I I  

I 2  

I3 

14 

I5 
16 

17 
18 

19 
2 0  

2 I  

2 2  

23 

24 
25 
26 

27 

I 

2 

3 

4 

5 
6 

7 

3 
4 

4 

5 
6 

6 

6 

6 

8 

8 

8 

9 
I O  

I 2  

I 2  

I 2  

I 2  

I 2  

I 2  

1 2  

I 2  

I 2  

1 2  

15 
i8  

2 0  

24 

3 

4 

4 
6 

8 
I 2  

I 2  

4 

n$ 

N =  5 

2 I I I I  

2 2 2 I I  

3 2 x l I  
2 2 2 2 2  

3 3 2 2 2  

3 3 3 2 1  
4 3 2 2 1  
5 2 2 2 1  

4 3 3 3 3  
5 5 2 2 2  

6 3 3 3  I 

4 4 4 4 2  
7 4 4 4  I 

5 5 5 5 4  
6 5 5 4 4  

6 5 5 5 3  

7 5 4 4 4  
7 6 5 3 3  

7 7 4 4 2  
8 5 5 3 3  
8 5 5 5 1  

8 7 3 3 3  
io 5 3 3 3  
8 6 6 6 4  

ix 8 8 8 1  

1 4 1 1 5 5 5  

I4 9 9 9 7  

N = 6  

I I I I I I  

2 2 I I I I  

3 I I l l I  

3 2 2 2 2 1  

3 3 3 3 3  I 

5 5 5 3 3 3  

7 5 3 3 3 3  

N =  7 

2 I I I I I I  

N = 8  

I I I I I I I  

Arithm 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

CO 

O0 

O0 

130 

O0 

OO 

0 0  

O0 

OO 

OO 

CO 

O0 

OO 

OO 

OO 

CO 
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x 5. L e V a v a s s e u r ' s  l / s t  

In his 1885 paper [I6 b], Picard gave as sufficient condition for the monodromy 
group P of the multivalued function 

Setting 
tions as 

F(x,y) = f ? u  x'-I  (u --  I) x ' - I  (u --  x) x'-x (u --y)X'-Xdu 

(0 < ~/ < I a l l  i), 

to be discrete the set of I O integrality conditions 

(x5.x)  ( ~ , , + X ~ - - I ) - ~ Z  + w o o ,  (3-- j ,~ ,N)  - ~ e z + ,  o < i * j < _ _ 3 .  

In  his 1887 note [16 c] Picard asserts without proof that the above io integers need not 
be ~> o but may be negative as well and still P is discrete. R. Le Vavasseur, in his x 893 
dissertation written under Picard's direction found all solutions of 

[L] ( X ~ + X ~ - - I ) - ~ E Z w o o ,  ( 3 - - ~ ,  X~)-~EZ, o < i 4 : j < 3 .  

s 
~ =  I --X, ( o < i < 3 )  and ~ 4 = 2 - -  y ~ ,  we can rewrite these xocondi-  

0 

4 

[L] Z ~, = 2, 
0 

(~, + ~ j -  x)-I  ~ z  u oo i f o < i + j < 4 .  

In [x3] , Le Vavasseur lists xo2 solutions of [L]. I f  in addition one imposes the 
inequalities o < l~i < x for o < i < 4, the resulting 5-tuple solutions, ignoring order, 
reduce to 27. These are the 27 listed in (I4.3) under N = 5; that is to say, condi- 
tion [L']: 

[L'] o <  ~q< I ( o < i < _ _ 4 ) ,  

4 

0 

(I --  ~q-- ~tj)-I ~ Z  u ~ i f i ~ e j ,  

is equivalent to condition (INT) of (3. I x). The reason for this striking coincidence is 
explained by (i 4.2),  Case A. Thus the apparently stronger integrality conditions imposed 
by Picard in [16 b] and [16 c] are equivalent to our condition (INT). 

To complete the historical record we note that Le Vavasseur's condition [L] 

( ') admits x o solutions not satisfying L', one of which, o, o, o, i -- ~, I + ~ , consists 
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of  an infinite number .  The  image of  the map  ~ ,  is not  a ball for these Io solutions. 
illustrate briefly the case o f  two solutions 

2 2 2 2 3 )  

= I and ~ 2 '  2 '  2 '  2 '  " 

We 

2 2 2 2 ~)  
(i) Set S = { o , I , 2 , 3 , 4 } ,  V------ 3 ' 3 ' 3 ' 3 '  . By (2 . 2 x ) the signature of  the 

hermit ian form is (2, I) ra ther  than the usual (1, 2), and f w  ^ w >  o as usual. Conse- 

quent ly  ~ :  Q . , t - +  P U ( V )  maps Q.,t to the complement  of  the ball B(a) +. The  
subset Q.0t of  Q.~t corresponding to the two points x 0 and  xt coming together  maps to 

the fixed point  set of  the m o n o d r o m y  ~'01 of  xt a round  x0--which is unipotent  since 
W0 + Vtl is integral (cf. ( I 2 . 3 . 2 ) ) .  Hence  Q.01 maps to a line tangent  to the bounda ry  
of  the ball at the point  fixed by  "(0x. I t  is easy to verify that  the m o n o d r o m y  group I'~ 

is a matr ix group with coefficients in Z ( ~ i - )  and is therefore discrete in U(2,  1). H o w -  
ever, lattice subgroups of  P U ( V )  do not  operate  discontinuously on the complement  of  
the ball, so that  the strategy of  Section io cannot  be implemented  in this case. 

( i I I I ) 
I Set S' = {4}. Here  the intersection form is not  (ii) Vt=  2'  2'  2'  2'  " 

defined on all o f  t HI~(P {x0, xl, x~, x3} , L')  and L'  H~ls,l(Po, L0) bu t  ra ther  on H '  = 

has m o n o d r o m y  corresponding to ( I  I I I ) .  By (2 .2 I ) ,  the intersection form has 
' 2' 2' 

signature (I, i) .  kZ 

As in the euclidean case (13.2) ,  the image of  ~ : Q . - +  V 1 = H,is,/(Po, L0) lies 
on a two-dimensional  affine hyperp lane  H which is parallel  to H ' ,  H ~ P* --  g, where g is 
the line in the projective 2-space, which is defined by the vector  subspace H '  o f  V. As in 

the preceding case, w~(Q.0~) lies in the line of  fixed points of  the pseudo-reflection T0~ 
for I < i < 3- By contrast ,  w~(Q-O) is the point  on the line t fixed by the pseudo- 
reflection ~,~ for i <  i 4=j < 3. The  m o n o d r o m y  group I'~ is a matrix group with 
coefficients Gaussian integers and is therefore discrete. 
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