MONODROMY OF HYPERGEOMETRIC FUNCTIONS
AND NON-LATTICE INTEGRAL MONODROMY

by P. DELIGNE and G. D. MOSTOW (*)

1. Introduction

The hypergeometric series

(a, n) (b, n)

(1) Fla,bie30) = 5 20

xﬂ
"t %] <1

n—1

where (a,7) = Il (a 4-), defined for ¢ not an integer < o, was first introduced by

Euler in 1778 as a solution of the hypergeometric differential equation
(2) (1 —x)y" +(c—(a+b+1)x) ¥y —aby =o.
F(a, b; c; x) represents the unique solution of (2) which is holomorphic at x = o and

takes the value 1 at x = 0. If neither b nor ¢ — b is an integer < o, Euler knew
the integral representation

I'(b) T'(c — b)

Replacing z by «~!, (3) also has the form

1
F(a, b;¢; x) = f 21 (1 — z)c—b-l (1 — 22)" % dz.

0

(3) f ¢ (u— 1) Nu — x)” % du.
1

If we integrate instead from g to & with g and & in {0, 1, ®, x} we get other solutions
of (2), a fact discovered independently by Hermite [g], Pochhammer [17], and Schifli [1g].
Even when the integral diverges, it yields solutions of (2) when taken as its Hadamard
¢ finite part ”, provided that the integrand does not have a pole of integral order at g or 4.

The hypergeometric equation (2) is the unique second order linear differential
cquation with regular singularities, singular only at o, 1, co with exponents (0, 1 — ¢},
(0,¢ — a — b), (a, b) respectively. ¢ Exponents (x, «’) at a singularity >’ means that
suitable linearly independent linear combinations of the branches of a solution have the

(*) Supported in part by NSF Grant MCS-8203604.
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form (x — p)* fi(x), (x — p)* f(x) with f; holomorphic around p; if « —a’€Z an
additional logarithmic term is allowed. In 1857, Riemann proved that the solutions
of (2) are the only multivalued functions with exactly two linearly independent branches,
branching only at o, 1, co with exponents as above (cf. [18]). Riemann’s proof assumed
that none of the exponent differences at a singularity was an integer and proceeded
by first computing global monodromy. The above characterization of the hypergeo-
metric equation is the basis of Fuchs’ proof of Riemann’s theorem (cf. [8]).

In his seminal paper [20], which seecks to determine the values a, b, ¢ for which
the hypergeometric function is an algebraic function of x, Schwarz considered the
map x> wy(x)/w,(¥) where w, and w, form a base of W, the two dimensional linear
space of all solutions of (2). Let Q denote the universal covering space of
Q:=PYC) —{o, 1,0}, The map

(4) w: x> wy(x) [y (%)

is a multivalued map from Q to the projective space P(W*) of lines in the dual space W*
of W, i.e. w may be construed as a single-valued map

(4") &: Q - P(W).

The fundamental group =,(Q) acts on P(W*) (* monodromy action ”’) and the map @
is m,(M)-equivariant. Let I' denote the image of =, (Q) via the monodromy action.
For Schwarz’s original problem, the question reduces to ¢ when is I' finite? > Schwarz
also solved the problem: when can (4) be inverted to provide a univalued map from
an open domain to QQ? When this happens I' has a fundamental domain for its action
on either (i) P(W*), (ii) P(W*) minus a point, or (iii) a disc in P(W*), and is conse-
quently discrete in PGL,(C).

It is case (iii) of this latter question which Picard generalized in [16 4] to a two
variable analogue of the hypergeometric function. In the more general d variable
case, this function is best defined by its integral representation

d+1

(3”) F(x23 ey xd+1) :f u_uﬂ(u . I)—U-l H (u . xi)__u.- du.
1 2

Let p, be the order of the pole of the integrand at co. When the sum is extended over
all the p’s, one has Xy, = 2. In this introduction, we assume that none of the g, is
an integer. ‘

The function G obtained from F by holding fixed all variables but one was inves-
tigated by Pochhammer [17]. He formed the (d + 1)-order linear differential equation
satisfied by G and characterized its solutions as the multivalued functions with exactly
d + 1 linearly independent branches and ramification of a prescribed type. At each
finite ramification point, d branches of G are holomorphic, and at oo the same holds
true after multiplying G by a suitable power of the variable.
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The function F defined by (3”) has a power series expansion

d+1
(1') T'(2 — po — py) P l;l (s ) (1 — o> i) aﬁx i.,
It — po) T(1 — ) (2 — P — 1, 2m) 2 !

For d = 2, this series has been investigated by Appell [1 5] who showed that
it satisfies a system of linear partial differential equations expressing each second deri-
vative of F in terms of its first derivatives. In [16 4] Picard characterized the solutions
of this system as the multivalued functions of two variables x, y with exactly three linearly
independent branches and with ramification of a prescribed type along the seven lines x
or y=0,1,», x =3 The function F is the only solution holomorphic at (o, o).

For d arbitrary, the series (1’) has been investigated by Lauricella [12], and
Terada [22] obtained results parallel to those of Picard [16 a].

The existence of differential or partial differential equations of Fuchsian type as
above is to be expected if one considers (3”') as a period integral. The equations arc
satisfied not only by F but also by any integral of the same integrand taken from g to %
where g and & are in {0, 0,1,%,, ...,%,,,}. There are d + 1 lincarly independent
such integrals, and, following Schwarz, it is natural to take them as the projective
coordinates of a point in projective the d-space P% This yields a map

#) : QP
where Q is the universal covering of the space Q C (P')¢ defined as
Q ={(x)|x *o0,1,00 and x; + x; for ¢ +j}.

The action of m,(Q) on P? is called the monodromy action. The map (4') is =,(Q)
equivariant. Let T' denote the image of =,(Q) in PGL(d + 1, C). 1In[16 a] and [16 3]
Picard gives a criterion for the multivalued map w: Q — P?(d = 2) defined by (4)
to invert as a univalued map from a ball in P¢ to a partial compactification of Q.. When
this happens, I is discrete in a PU(1, d) subgroup of PGL(d + 1, C).

As pointed out in [14 a] the proof of discreteness of I' that Picard sketches in [16 a]
leads to an obstacle and is inadequate. Our first objective in this paper is to give a
correct proof for d = 2 and also for general d. In order to carry this out in modern
concepts, we nced only deal with rational y; and multivalued integrands on P! which
are single valued on a finite ramified covering of P.. However, in order to provide
a framework for dealing with arbitrary parameters y, we have introduced local systems
on P'—{o,0,1,%,...,x%,,}. This necessitates an abovo development of holo-
morphic cohomology in order to validate the corresponding Hodge decomposition.
In the end, this viewpoint does have the advantage of directness.

The two main theorems of this paper are Theorems (11.4) and (12.11). The
first says in effect: If o<y, <1 for all i (0<i<d+1 or i=o) and
(1 —w;—u)~! is an integer for all ¢+ j such that g, 4 ;< 1, then the mono-
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dromy group of the hypergeometric function (8"') is a lattice in the projective unitary
group PU(1, d), i.e. is discrete and of finite covolume.

Theorem (12.11) combined with (12.9) says in effect: For each non-arithmetic
lattice arising in Theorem (11.4), there is an algebraic family defined over Q of algebraic
curves X whose monodromy group is a subgroup of Aut H(X,, Z) which is not of finite
covolume in its Zariski-closure.

The example 15 of § (14.3) corresponds for instance to the family of curves,
depending on the parameters x, y, with equation

0 = u(u — 1)° (u — %)° (u — »)*

(a cyclic covering of order 12 of P?).

The integrality condition that (1 — p;, — w)~' be an integer ensures that the
key map of this paper is etale in codimension one. A model situation in which inte-
grality is used in such a way is the following. Let D be the unit disc, D*:= D — {0},
and o = rfs a rational number > o, written as a reduced fraction. Let D*~ be the
finite covering of D* on which the multivalued function z+» 2* is defined. We complete
it to the ramified covering D~ = D** U {o} of D. The multivalued function 2z
on D* “is” a uniformizing parameter for D~ at o. The map 2z 2* from D~ to C
is etale at o (i.e. etale in codimension 1) if and only if «~! is an integer. Indeed
z* = (2¥*)". For a description of how this enters the proof, we refer to the comments
after (g.11).

The lists in Section 14 provide examples of non-arithmetic lattices in PU(1, d)
for d = 2, 3—both cocompact and non-cocompact for d =2. For d> 5, Theo-
rem (11.4) yields no lattice at all, by (14.2).

The case d =1 is treated in (12.5.5) and (12.6.3). The lattices arising from
Theorem (11.4) in this case are the triangle groups [p, ¢, 7] generated by rotations
through double the angles with centers the vertex of a geodesic triangle in the Poincaré
disc, with angles =/p, w/q, =fr when p, ¢, r are positive integers (or oo) satisfying
I
b2

number.

+ : + 1< 1. These lattices are described in Fricke-Klein [6] and are infinite in
q

However, the number of arithmetic lattices arising is finite. An explicit list can
be deduced from results of Takeuchi on arithmetic triangle groups [21].

In the final Section 15, we make some comments about the list of 102 solutions
of R. Levavasseur in [13] to Picard’s integrality conditions for discreteness in the case
d =2,

In the paper ¢ Generalized Picard lattices arising from half-integral conditions *,
printed after this one, the second named author is able to relax the integrality condition
on (1 — p;— w)~' and obtains lattices for d<g [145].
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2. Cohomology of a rank omne local system on a punctured projective line

(2.1) Let us start with the following data:
P : a complex projective line;
N : an integer > o;
S : a set of N points of P;

« = (a,),es : a family of complex numbers indexed by S, satisfying the condition
e, = 1.

We will be mainly interested in the case when N > 3 and none of the o, is 1.

If a base point o e P — S is given, the functor * fibre at 0 is an equivalence
of the category of complex local systems (= flat vector bundles) on P -- S with that
of complex vector spaces provided with an action of w;(P — §,0). In particular,
rank one local systems correspond to homomorphisms H;(P — S) = =,(P -- §, 0)® — C".
The group H, is generated by small positive loops y, around each s ¢S, with the
relation Zy, = o as the only relation. Up to isomorphism, there is hence a unique
one dimensional complex local system L on P-— S such that the monodromy of L
around each se S is multiplication by a,, or, as we will say, of monodromy «. By
definition, if {4 is in the fibre of L at 4 point x near s €S, and if we let x turn counter
clockwise once around s, and push ¢, horizontally along the path of x, then when coming
back, ¢, becomes «,./,. In other words, in term of a local coordinate z centered at s,
and of a multivalued section ¢(z) of L defined in a neighborhood of s, one has

e(exp(2niu) . 2) = a,.e(cxp(2miu). 2)
u=1 w=

The complex local system L has automorphisms: Aut(L) = C', with 2eC
corresponding to multiplication by the scalar ». Because of them, even though the
isomorphism class of L is uniquely detcrmined by the x,, L is not determined up to
unique isomorphism.

Let us fix one L. In (2.2)-(2.10), we will review some of the descriptions of
the cohomology of P — S with coefficients in L.

(2.2) Combinatorial description. —- Let us fix a triangulation & of P —S. One
can then identify H*(P — S, L) with the cohomology of the complex of L-valued
cochains of & cochains ¢ for which the value of ¢ on an oricnted simplex 6 is a horizontal
section of L on ¢ (thus ¢(s) € H%(s, L)). To make sense of the formula (dc) (o) = ¢(bo),
one uses that a horizontal section of L on a face of ¢ extends uniquely as a horizontal
section on a. This complex is the dual of the complex of chains of € with coefficients
in the dual local system LV: chains C which are finite sums E¢,.6 with ¢, € Hq, LY)
and o an oriented simplex of &. The sign rule (de, G = (¢, bC) is however unusual
for duality of complexes. We write H,(P — S, LY) for the corresponding homology.

10



MONODROMY OF HYPERGEOMETRIC FUNCTIONS 11

The cohomology with compact support H}(P — 5, L) is the cohomology of the
complex of compactly supported L-valued cochains of &. The dual complex is the
complex of locally finite chains with coefficient in LY: chains C which are possibly
infinite “ sums” ¢ .0. We write HY(P — S, LY) for the corresponding homology.

Let X be obtained from P by deleting a small open disc around each seS.
“ Small ” means ¢ small enough . What matters here is that the closure of the discs
be disjoint. A homotopy argument shows that (X° denoting X — 9X)

H'(P —S,L) 5 H(X, L) 5 H(X°, L)
and that H*(X mod 2X, L) = H;(X° L) 5 H(P — S, L).

To compute cohomology, one can hence use a triangulation of X, instead of one of
P — S. As X is compact, the triangulation is finite, and this combinatorial description
makes clear that the Euler-Poincaré characteristic
x(P — S, L) :=Z(— 1)dim H(P — S, L)
(resp. (P — S, L) := Z(— 1)*dim H{(P — S, L))
is independent of L. Each H' (resp. H!) is indced expressed as the i-th cohomology
group of a finite dimensional chain complex K, and dim K* is independent of L. In

the case of cohomology with compact support, the additivity of x, (deduced from the
long exact sequence ... — Hi(P — S, C) - HP, C) - H(S, C) —»...) gives

(2.2.1) 2(P—8,L) = % (P —S, C) = %(P) — x(S) =2 — N.

For an algebraic variety Y, one always has y,(Y) = x(Y). In the case at hand
(Y =P —8S); this can be deduced from Poincaré duality. One gets

(2.2.2) x(P—S,L) =2 —N.

(2.3) De Rham (C®) description. — H*(P — S, L) 1is the cohomology of the de
Rham complex of L-valued C* differential forms on P — S, and H,/(P — S, L) that
of the subcomplex of compactly supported forms. If the triangulation & of (2.2) is
smooth, integration: o« ¢, (o) =Lm is defined. It is a map of complexes from

the de Rham complex to the cochain complex (both with or without support condition),
inducing an isomorphism on cohomology.

The Poincaré duality pairing obtained by integrationon P — S:«a, B> fr—sa AB
induces a perfect pairing
H(P — S,Ly® H:~P — S,LY) 3 C,
the composite of cup product with value in HX(P — S, C), and of the trace, or
integration, map : HXP — S, C) 5 C.
If at least one of the «, is not 1, there can be no global horizontal section:
H(P — S,L) =0, and a fortiori none with compact support: HYP — S,L) = o

11



12 P. DELIGNE AND G. D. MOSTOW

(for this, S + @ suffices). The same applies to the dual LY of L, with monodromy a~!,
and Poincaré duality gives vanishing for H? and H2. The Euler-Poincaré characteristic
being known ((2.2.1) and (2.2.2)), we get

Proposition (2.3.1). — If «, + 1 for at least one s €S, then WP —S,L) and
H{(P — S, L) vanisk for i + 1, and
dimH(P — §,L) = dim H{(P — §,L) = N — 2,

Currents (2.4). — Instead of using the C® de Rham complex, consisting of forms
written in local coordinates as 2 fidx A ... Adx,.e, with ¢ an horizontal section
i

of L and f; a C®-function, one can as well use the complex of currents, where f; is
allowed to be a generalized function (distribution). This complex can be used to
express Poincaré duality as a cap-product isomorphism between homology and cohomo-

logy: for C a LV-valued chain, there is a unique current (C) such that jc w = I(C) A o,

one has d(C) = (— 1)%°HC, and the map OCr (C) provides isomorphisms
H(P —S,L) 3 H2 P —S,L) and HYP — S,L) 3 H*~YP — S, L).

It is often more convenient to use currents than the chains of a fixed triangulation.
If B is a rectifiable proper map from an open, semi-open or closed interval I to P — S,
and for e e H(I, p'LY), we let (e.B) be the LV-valued current for which

f(e.B) Aw =L<e, B* wd.

If 8:[o,1] - P mapsoand 1 t0S, and Jo, 1[ to P — S, thenfor e e H(Jo, 1[, p* LVY),
e.p is a cycle and as such defines an homology class in HY(P — S, LY). We will
use such cycles to construct convenient bases of HY(P —- S, LV).

(2.5) Assume the following is given:

a) a partition of S into two subsets S; and S,;
b) trees T, and T, (a tree is a contractible CW complex of dimension < 1), and an
embedding f:T,H T, < P, mapping the set of vertices of T, (resp. T,) onto S,

(resp. S,);
¢) for each (open) edge a of T, or T,, an orientation of a, and ¢(a) e H%(q, p* LV).

For each edge @, ¢(a).B|a is then a locally finite cycle on P — S, with coeffi-
cient in L.

Proposition (2.5.1). — If 11 «, &+ 1, the elements £(a).B | a, for a an edge of T,
8sE S,
or Ty, form a basis of HY(P — S, LV).

Proof. — Let T. be the disjoint union of the (open) cdges of T;,. We have
(P—S) —p(T; T, =P — B(T,lI'T,), hence a long exact sequence
> HATII T, g LY) S HIP — 8, L)
>H{(P —p(T, LI T,),LY) —...

12
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The group HY(T;1IT;, 8*LY) has as basis the #(a).a. It remains to be proved
that HY(P — 8(T, I T,), L) = o.

The space P — B(T,) — B(T,) is the complement of two disjoint trees in SZ
” is the product
ofthe o, (s €S,). In P — S, aloop around T, can indeed be homotoped to a product
of loops around each se§; :

It is essentially an annulus. The monodromy of ¢ turning around T,

X

The group HY(P — B(T, U T,), LY) is dual to Hi(P — B(T, U T,), L), which
is the Poincaré dual of H?2~*(P — B(T, U T,), LV). One can homotope P — B(T, U T,)
to S', and the group becomes H?>~*(S!, LV), for LV a non trivial local system on S'. It
remains to use the

Lemma (2.5.2). — If L is a non trivial rank one local system on S, then H*(S', L) = o.
The H? is o by non triviality, and y(S', L) = x(S!) = o.
Remark. — As T,1I T, has N — 2 edges, (2.5.2) reproves that

dimH{(P — S,L) =N — 2

when the «, are not all 1.

(2.6) Sheaf cohomology. — We will always identify a local system L with its sheaf
of locally constant sections. Lect j denote the inclusion of P—S in P. Then,
H;(P — S, L) is the cohomology of P with coefficients in j L, the extension of L by o.
It is the hypercohomology on P of any complex of sheaves K with #°(K) = j L and
H#(K) = o for i + 0. On the other hand, if L* is any resolution of L whose components
are acyclic forj, (R?j, L¥ = o for ¢> 0), then H*(P — S, L) is the hypercohomology
on P of 5, L. To prove it, one reduces to the casc where L' (and hence j, L*) is soft,
one has I'(P —S,L") =TI'(P,j,L*), and

H®P-S,L)y:=HTP-S§,L)=HT,,; L) =-H(,j L.

Proposition (2.6.1). — If all o, are different from 1, then
H:(P - S,L) > H'(P — S, L).

Proof. — Let L* be a soft resolution of L, for instance the L-valued C* de Rham
complex of sheaves. It suffices to check that j, L* is a resolution of j; L, and this results
from the local fact that for D any small disc around s €S, one has

HTID-—-sL)=H(D—sL) =o0.
To check this vanishing, one can replace D — s by a homotopic S* and apply (2.5.2).

31
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From the point of view of homology, this implies that a locally finite 1-cycle with
coefficient in LV is homologous to a compactly supported one. Here is a drawing of

how it can be done
i

This is reminiscent of the arguments used in Whittaker and Watson (12.22) (Hankel’s
expression of I'(z) as a contour integral) or (12.43) [24].

(2.7) The de Rham (holomorphic) description. — The holomorphic L-valued
de Rham complex (L) : O(L) - Q(L) is a resolution of Lon P — S. One can hence
interpret H*(P — S, L) as the hypercohomology on P — S of Q'(L). As S 0,
P — S is Stein, hence H!P — S, Q?(L)) = o for ¢> o, and this gives
(2.7.1) H'(P — S,L) = H'I'(P — §, Q*(L)).

Similarly, R?j, Q?(L) =o for ¢> o hence

H'(P —S,L) = H'(P, 5, Q' (L))

(hypercohomology of P, with coefficients in the complex j, Q'(L); see (2.6)).
After the preliminaries (2.8), (2.9), we will show how to replace 7, Q'(L) by
smaller complexes of sheaves.

(2.8) We will often describe a section of O(L) on a connected open set U as the
product of a multivalued function with a multivalued section of L. This has the
following meaning: U should be provided with a base point 9, and a multivalued section
of a sheaf # (0, or L, ...) is a section of the pull back of &# on the universal cove-
rings (U, 0) of (U, 0). Products are taken on U. A multivalued section, which is the
pull-back of a section on U, is then identified with that section. The role of the basc
point can be played by a contractible subset of F of U. A section of L at o extends
uniquely to a multivalued section and will be denoted by the same symbol. A multi-
valued section of 0 is determined by its germ at o, and will be denoted by the same
symbol. As multivalued sections of @, we will mainly use products Ilg{i. When ¢
is not real and negative, the principal determination of g* is exp(2niplogg), with
[Imlog g| < mi. As a rule, g will denote the multivalued function whose germ at
the base contractible set F is the principal determination when g; is not real and negative
on F. When the determination used is irrelevant, we will not take the trouble of
specifying which one we mean.

(2.9) Fix seS and let 2z be a local coordinate, which we take to be an iso-
morphism, carrying s to o, of a small neighborhood D of s with a disc in G centered
at o. If peC is such that «, = exp(2mip), the monodromy of z7* around s is the
inverse of that of a horizontal section of L. Any section z of O(L) (resp. Q'(L)) on D
can hence be written u = z %.¢.f (resp. u = z"%.¢.f.dz) with ¢ a non zero multi-

14



MONODROMY OF HYPERGEOMETRIC FUNCTIONS 15

valued section of L and f a holomorphic function on D*. We define u to be meromorphic
at s if f is, and we define its valuation by

Z’,(ll) = l(f) = K.

These definitions are independent of the choices of local coordinate and of .

(2.10) The de Rham (meromorphic at S) description. — Let us write j* Q*(L) for
the subcomplex of Q*(L) of meromorphic forms. A local computation around each
s € S shows that the inclusion of ;7 Q*(L) in 7, Q*(L) induces an isomorphism on the
cohomology sheaves. This implies that

(2.10.1) H'(P, j» (L)) 3 H'(P, j, (L)) = H'(P — §, L).

It follows from (2.11) below that ;7 QP(L) is an inductive limit of line bundles
whose degrees tends to co. From this one concludes first that HY(P, ;7 Q?(L)) = o
for ¢> o, and then that H*(P, ;7 Q*(L)) is simply H* I'(P, j* Q*(L)), the cohomology
of the complex of L-valued forms holomorphic on P — S and meromorphic at each
seSs:

(2.10.2) H'(P — S, L) = H* T'(P, j» Q*(L)).

(z.1x) Let (), be a family of complex numbers, such that exp(2mip,) = «,.
We define the line bundle 0(Zy, s) (L) as the subsheaf of j" ®(L) whose local holo-
morphic sections are the local sections u of j* @(L) such that for s €S, the integer
v,(u) + u, is > o (in short: »,(x) > — p,). With the local coordinate notation (2.9),
2z~ %.¢ determines an invertible section of @O(Zp,s)(L) near seS. The degree of a
meromorphic section u of a line bundle .# at a point x is the order of the zero (or minus
the order of the pole) of u at x; for z a local coordinate centered at x, it is the supremum
of the integers n such that z~" u is a holomorphic section of # at x. The degree of ¥
is the sum of the degrees at all points of any non zero meromorphic section of &. If
u is a meromorphic section of O(Zp, s) (L) and x €S, one has

deg,(u) = v, (u) + p,-

If onc defines p, =0 for x e P — S, the same holds at any x eP.
Proposition (2.xx.x). — The line bundle O(Zp., s) (L) is of degree Zp,.

Proof. — We may assume P =P! and o ¢S. Let e be a multivalued horizontal
section of L. The product

u=II (z—s)"%.e
se 8

is an invertible section of O(Zy,.s) (L) on the affine line. At oo, u is meromorphic,
of valuation Zp,. The degree of O(Zy, s) (L), equal to the sum at all xeP of the
degree of any non zero meromorphic section, is hence Zy,.

15
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We define QYZp,.s) (L) := 0(Zy,.s) (L) ® Q. It results from (2.11) that
(z.11.1) deg Q'(Zy,.s) (L) = — 2 + Zp,.

In particular, if Zp, = 2, the line bundle Q'(Zg,.s)(L) is of degree o, hence
isomorphic to 0, the trivial line bundle.

Corollary (2.x2). — If Ty, = 2, there is up to a constant factor one and only one nor
zero form € T'(P, j™ Q' (L)) whose valuation at s €S is > — p,. One has v,(0) = — g,
and o is inveriible on P — S.

For P=P! o ¢S, and ¢ a multivalued horizontal section of L, one has (up
to a factor) w = Il (z —s)"™.e.dz. If we S, onehas o = Il (z2—s) ™. e.dz
se8 s€85—~o

Proposition (2.13). — Assume that Zyp, = 2, N > g, and that none of the «, is 1
(1.e. that nome of the w, is an integer). Then the cohomology class of the form w of (2.12) is
not zero.

Proof. — One has Xy (w0) =X —u, = —22>1 — N. The proposition hence
results from the

Proposition (2.14). — Assume that none of the «, is 1. If a non zero form w is such that
2y, (w) > 1 — N, its cohomology class ts not zero.

Proof. — By (2.10.2), it suffices to verify that the equation « = du has no
solution u e I'(P, j* O(L)).
For any local section u of j;* (L) near s, one has

U,(dll) Z vs(u) — I,

with equality if v,(x) is not o, or if v,(du) is not a positive (mcaning > o) integer. The
integer case being excluded, a solution # would be a section of O(— Z(v,(w) + 1) s5) (L),
a line bundle of degree — Z(7y,(w)} + 1) < — 1, a contradiction.

(2.15) Here is how (2.13), (2.14) has to be modified for integral u’s. As the
result will not be needed, except for some historical comments in § 15, we will be sketchy.

(2.x5.1) When some «, are 1, (2.6.1) is not true, one has to distinguish between H}
and H', and even to introduce some intermediate groups: for S’ CS, the family ®(S’)
of subsets of P — S closed in P — 8§’ is a family of supports, and Hgg (P — S, L)
is defined. For j' the inclusion of P —S into P — 8§, it is H*(P — §’,;/ L). For
T CS, define T(1):={seT|a,=1}. The proof of (2.6.1) shows that

Haygu(P — 8, L) = Hygy(P — S, L).

These groups are also the hypercohomology groups, on P, of the subcomplex
of j™ Q*(L) consisting of the u in j"(L) and of the o in j™ QY(L) such that z,(w) > o

16
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and v,(u) > o0 for se(S— S (1). If the p, are such that «, = exp(2miy,), and
that §°(1) is the set of s for which g, is integral > o, the groups Hg)(P — S, L) are
also the hypercohomology groups of the sub-complex O(Z(w, — 1) 5) (L) - Q'(Zy, s) (L)
of j7 Q*(L).

(2.15.2) If ©el(P,jmQ'(L)), and if all s with «, =1 and 7,(0) <0 are
in §’, then « defines a cohomology class in Hyg)(P — S, L). If in addition 8’ contains
none of the s for which simultaneously ¢, =1 and u,(0)> o0, and if further
Zy,(w) > 1 — N (which amounts to «» having at most N — g zeros, counted with
multiplicities, on P — S), the proof of (2.14) still shows that the class of @ in
Hgy(P — S, L) is not zero. This applies to the form « of (2.12), with 8" =S§,
provided N >3 and p,> o whenever p,eZ.

Remark (2.16). — Let us assume that none of the «, is 1. If © is an holomorphic
section of QL) on P — S, by (2.6.1), the class [0] of @ in H'P — S,L) is the
image of a unique class, again denoted [w], in HY(P — S, L). For any locally finite
cycle or current C with coefficient in LY, ¢[C], [0]) is defined: H#P — S, LY) is
indeed paired with H(P — S, L). We want to prove that

<[CL, [0]> = [, o

This is not completely obvious, especially since the integral may be divergent. The
problem is rather to understand which value the cohomological formalism attaches to
the integral.

1st answer: One replaces G by a finite homologous cycle C’, as pictured in (2.6),

and ([C], [0]> = [ o

2nd answer: If D, is a small open disk around seS, one has H'(D —s,L) = o
(cf. (2.6)). On D;:=D — s, o ishence of the form du,, for a unique section u, of O(L)
onD;. Let ¢, be acompactly supported G* function on D,, equal to 1 in a neighborhood
of s. The C® 1-form o — X d(p, u,) is cohomologous to @ and is compactly supported.
One has hence

<[CL, [6]> = [ o — d(e, ,).

It is sometimes more convenient to take for ¢ the (discontinuous) characteristic function
of D,. The current o — Z d(p,%,) is again compactly supported and cohomologous
to w.

These formulae can also be used to define the integral of » on a locally finite chain
or current, which is a cycle only near each seS. Given for instance a path #:[o, 1] - P,

17



18 P. DELIGNE AND G. D. MOSTOW

with B([o,1[) in P —S and B(1) =seS, and given eeH[o, 1], 8" LY), the

formula for the ¢ finite part” f g @ d(p,u,) can be rewritten
e.

1—e
Pffe.a"’ = [T B0y — elat 1 —€), B ufat 1 — €]
For a meromorphic o, this agrees with Hadamard’s * finite part ” of a divergent integral.

Example (2.17). — We take P =P!, S ={o0,1,©} and we assume that none
of the p, is an integer, and that Zyu, = 2. For A, =1 — p,, this means Z), = 1.
We normalize L by fixing a section ¢ of it on Jo, 1[, and we let ¢¥ be the dual base of LY
on Jo, 1[. Take w = 2*"!(1 — z)»~'.edz; the “ principal ” determination of z*~!
and of (1 — z)»7 ! on lo,1[ is used (cf. (2.8)). By (2.5.1), the homology
HY(P — S, LY) is one-dimensional, generated by the current ¢Y.]Jo, 1[. The content
of (2.13) here is that

(2.17.1) Pfj: 71 — 2T dz # o,

The generalization (2.15) of (2.13) can be used to extend this to the case when
% and Ay, if integers, are > 0, and A, =1 — Ay — };, if an integer, is < o.

Of course, (2.17.1) is easy to deduce from the formula for the B-function in terms
of T-functions.

(2.18) We now assume that each «, is of absolute value 1, and not equal to 1.
There is then a horizontal positive Hermitian structure ( , ) on L. Let us choose one.
One can view ( , ) as a perfect pairing bctween L and the complex conjugate local
system L. As such, it induces a perfect pairing

Jo: HY(P — S, L) x,HY(P — S, L) > H}P —S,C) = C

((2.3), (2.6.1)). The vector space HY(P — S,L) is the complex conjugate of
Hi(P — S, L), and {,(x, o) defines a non degcnerate skew-Hermitian form ¢ on
HI(P — S,L). Anticommutativity of the cup product shows that

$olu, )~ = — Yolo, u), i.c.
(2.18.1) Yy, )™ = — (o, u).

- — 1 — 1 _ ..
Writing (4, v) 1= — ¢(u, v) = —— o(u, v), we have a Hermitian form
2w 27t

(2.18.2) (4, 2)™ = (v, u).
A section o of j7* Q'(L) is said to be of the first kind if v,(0) > — 1 for each seS.

Those are the forms for which the integral fp—sm A o is convergent. The integrand
is defined as follows: if, locally, w; =¢.B; (i =1,2, B; a 1-form, ¢ a section of L),

then ©; A wg is the (1, 1)-form (e, e) By A Ba-.

18
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We define H“(P — S,L) as the vector space of forms of the first kind in
(P, j~Q'L)), and H*'(P — S,L) as the complex conjugate of H“*(P — S, L).
It can be viewed as the space of antiholomorphic L-valued forms, whose complex
conjugate is of the first kind. Such forms also define cohomology classes.

Proposition (2.19). — If o, and «, are each either in H"Y(P — S, L) or in
H*Y(P — S, L), one has, for the corresponding cohomology classes [w,] and [wg],

Yo, [og]) = f,_ 01 @

Let us assume, for definiteness, that o, is in H"*(P -~ S, L). Choose D,, (1,),¢5,
as in (2.12), and let ¢, be the characteristic function of D,. It follows from (2.12)
that the class of o, in H(P — S, L) 1is also the class of the compactly supported
current o, — Z d(p,u,). Hence (2.3)

$(lwnl, [og]) = dollonds [@a]) = [,_, (@ — T d(p,1,)) A @

= o A @y + B[4,y
fP—UD, A ep, v 2

When we let the D, shrink, the first term converges to J.P g @1/ wz. We want

to show that all others tend to 0. When the radius r of D, tends to zero, the size of u, w,
on 2D, is O(r»®+olr)y One has o,(y,) =7,(ew;,) + 1. The forms o, and o,
being of the first kind, the size is O(r®), with B> — 1. On the other hand, the length
of 8D, is O(r); the boundary term is hence O(r**') and tends to zero.

Proposition (2.20). — Under the assumption (2.18) that |«,| =1, «,+ 1 for s€8,
the natural map

HYYP — S, L) ® H*YP — S, L) - H!(P — S, L) = H(P — S, L)

is an isomorphism. The Hermitian form ( , ) is positive definite on H"°, negative definite on H"',
and the decomposition is orthogonal.

— 1

If o is in HYP —S,L) (resp. H*'(P — S, L)), the integrand perCll ©
is > o (resp. < 0), and vanishes only for @ =o. If o, and , are one in H"® and
the other in H*!, the integrand ;I——z w; A Wy vanishes. This implies that H"°® H**

T

injectsinto H'(P — S, L). It remainsonly to prove the surjectivity of H"°® H** - H".
We will check surjectivity by counting dimensions. Let g, be the number
between o and 1 such that «, = exp(eniy,). From the definition, it follows that

H" (P — S, L) = I'(P, Q!(Zp,.s) (L)). By (2.8), deg Q'(Zy,.s)(L) = — 2 + Zy,.
It is an integer > — 2 and hence
(2.20.1) dim H"°(P — S, L) = deg Q'(Zg,.5) (L) + 1 = — 1 4 Zy,.
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Let us apply this to L. One has to replace «, by &, = «;! and g, by 1 — ,.
One gets

(2-20.2) dim H*'(P — S,L) = — 1 + (1 — g,).

The sum of the dimensions is — 2 + Z1 = N — 2, as required (2.3.1).

Corollary (2.21). — Notation being as above (a, = exp{emip,) with o< p,< 1),
the signature of the Hermitian form ( , ) on HY P — S, L) is (Zp, — 1, Z(1 — p,) — 1).

Remark (2.22). — (2.20) is a special case of Hodge theory for the cohomology
of a curve with values in a polarized variation of Hodge structures: a local system,
provided with an horizontal positive Hermitian structure, can be viewed as a polarized
variation of type (o, 0). The artificial counting argument above enabled us to shortcut
the general theory, for which the reader may consult S. Zucker [25].

(2.23) In our applications, the @, will be roots of unity. When this is the case,
(2.20) can also be deduced from the Hodge theory of suitable coverings of P. Let X
be an irreducible abelian covering of P, with covering group G, ramified only at S.
If, for definiteness, we take P = P! and o €S, this means that the function field G(X)
of X is a subextension of the cxtension C(P')((z — §)¥i5_(ny) of G(z) = C(PY),
for suitable d.

Let = denote the projection of X onto P. The Galois group G = Aut(X/P)
acts (by transport of structure) on =, C (by abuse of notation, we also denote by G the
constant sheaf with fiber G), and at a point 2z ¢S, the representation of G on
(w, G), = H(n™'(2), C) is a regular representation of G. For each character y of G,
let L, be the subsheaf of =, G on which G acts by y. One has

n,C=@Lx
X

and, outside of §, L, is a rank one local system,

Let g, € G be the natural generator of the inertial (= decomposition) group
at s: if x(¢t) (0 <t<1) is a path in X, such that =x(¢) in P stays near s in P — S,
and turn once around s, then x(1) = g, x(0). Let d, be the order of g,. If ¢ is a local
coordinate centered at s, near s, X is a sum of copies of the Riemann surface of #/%,

If x(g,) =1, L, is alocal system at s. If y(g,) + 1, the fibre of L, at s is zero,
and the monodromy of L, around s is the d,-th root of unity x(g,).

If we take X to be the largest covering such that G is killed by d, G is the abelian
group gencrated by the g,, with the only relations

f=1 and g =1: G = (Z/d)5/(Z/d).

If P=P' and o €8S, X corresponds to the extension C(P')((z — )85 _(n;) of G(P").
This shows that any system of roots of unity (a,), with Ila, = 1, is of the form (x(g,)),es

for suitable X and y.
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Let H*(X, C), be the subspace of H'(X, G) on which G acts (by transport of
structure) as x. The isomorphism

H*(X; C) = H*(P, =, C)
is compatible with the action of G, hence induces isomorphisms
(2.23.1) H'(X, C), = H'(P, L,).

On P — S, the sheaf O(L,) is the direct factor (x, @), of =, @ consisting of the holo-
morphic functions on X such that f(g='x) = x(g) f(x). Similarly, Q'(L,) = (=, Q"),.
Let ;' be the inclusion of X — n~!(S) in X. On P, one has again

(2.23.2) JMLy) = (m g 0), and
(2.23.3) JrQON L) = (m, g QY.

Let us assume y(g,) # 1 for s €S, so that H'(P, L,) = H;(P — §, L). Diffe-
rential forms of the first kind on P — S correspond then, by (2.23.3), to the differential
forms of the first kind on X, on which G acts by y:

HY(P — 8, L,) = (X, @), = H¥(X),,

and (2.20) is the trace on H!(P — S, L,) = H!(X, C), of the Hodge decomposition
of H\(X, C).

3. Reformulation of Picard’s theorem

(3.1) We now let the punctures s move, while the monodromy remains the same.
The starting data will be:

P : a complex projective line;

N : an integer, > 3;

S : a set with N elements, for instance [1, N]JCNj;

o = (&,),cs: a family of complex numbers indexed by §, satisfying Il«, =1, and
such that none of the «, is 1.
We will be mainly interested in the case |«,| = 1.

For any space X mapping to P%, we will write Py for the pull back on X of the
universal punctured line

Pp ={(p,m) eP x P°|p ¢ m(S)}.

and = for the projection Py — X. Supposc a group H acts freely on X, with quotient Y,
and that a lifting of the action to Py is given. We will then write Py for Py/H and =
for the projection Py — Y. The H-equivariant fiber space Py over X is then the pull
back of Py over Y.

Let M CP3 be the space of injective maps m:S — P. Then,
Py ={(p,m) eP X M|p ¢m(S)}
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is a topologically locally trivial fiber space above M. On each fiber P, = P — m(S),
there is a rank one local system with monodromy «, i.e. with monodromy «, around m(s),
for 5seS. However, this local system not being unique up to unique isomorphism,
one cannot conclude that on Py there is a unique rank one local system L such that

(3.1.1) For m in M, the local system L, induced by L on P, has monodromy a.
If L satisfies (3.1.1), all local systems satisfying (3.1.1) are of the form L® n* T,
for T a rank one local system M. We will see in (3.12), (3.13) that there is an L satis-
fying (3.1.1). If N were 2, the analogous existence assertion would be false for «, + + 1.

(3.2) Supposc L satisfies (3.1.1), The projection = being topologically locally
trivial, the HY(P,,L,) (= H.(P,, L,) by (2.6.1)) organize themselves into a local
system R!z, L (= R'mL) on M.

We will be interested mainly in the corresponding flat projective space bundle
B(a)y:= PR'xn, L, the fiber space with fiber at meM the projective space
PH'(P,, L,) := (H'(P,,L,) —{o})/C’, and with flat structure, that deduced
from Rz, L. For any vector space V and non-zero element » eV, we will denote
by PV the projective space of one-dimensional subspaces of V and by P» the image
of » in PV,

If L' =L®="T is another local system satisfying (g.1.1),

Rz, L' = (R'n, L)®T,

and PR! x, L’ is canonically isomorphic to PR! =, L, i.e. the flat projective bundle B(a),
depends only on «. Another explanation of the same fact: the automorphisms of a
local system L, on P, with monodromy a« act trivially on PH'(P,,L,). Hence,
although L, is unique up to only a non unique isomorphism, PH!(P,, L,) is defined
up to unique isomorphism.

(3-3) Locally on M, the existence of L satisfying (3.1.1) poses no problem: if
U is a contractible neighborhood of m € M, a local system L, on P, with monodromy «
extends uniquely to a local system L on =~ *(U) and this extension has, fiber by fiber,
monodromy «. The flat projective space bundle PR' n, L; on U is independent (up
to unique isomorphism) of the choice of Ly; hence for variable U, they glue into a flat
projective space bundle on the whole of M. This enables us to define B(a)y without
having to assume the existence of a global L.

For ¢ € M, the flat structure of B(a)y defines an action of =,(M, o) by projective
transformations on the fibre B(a),. A choice of L enables one to lift this projective
representation of m;(M, o) on PH*(P,, L,) to a linear representation on H}(P,, L,).

(3.4) Fix a system of complex numbers (u,),cs such that «, = exp(2niy,),
and that Zy, = 2. For each m € M, there is then up to a factor a unique non-zero
section w of Q'(L,) on P,, meromorphic on P, and such that z,(w)> — p, (s€S)
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(2.12). Its cohomology class is not trivial (2.13). This construction hence defines
a section w,(m) of the projection B(«)y — M.

The flat structure of the projective space bundle B{«) induces a structure of holo-
morphic projective space bundle. With respect to it, we have:

Lemma (3.5). — The section w, is holomorphic.

Proof. — The question is local on M. Fix x € M, and choose on the fibre Py
a system of cycles C; with coefficient in LY giving rise to a basis of H,(P,,, LY). They
have support in some compact K and, for U a contractible neighborhood of m, small
enough so that K x UCP,;, L|K x U is isomorphic to the pull back of L |K by

a unique isomorphism which is the identity above m. This enables us, for m’ e U,
to consider C; as a cycle with coefficients in LY on P,; and each linear form .[c~ on
.3

the H'(P,.,L,,) (m' €U) is a horizontal linear form on R'x, L. This provides a
horizontal system of projective coordinates on PR! x, L.

Fix a coordinate z:P — P!, such that, for m’ in a possibly smaller neighborhood U
of m, z7!() ¢ P,., and let us trivialize L along z7!(c0) by a section e. We can take
(cf. (2.12))

o = I(z — 2(m'(s))) " %.dz.e,
and the projective coordinates of w,(m’) are the
J‘Ciﬂ(z — z(m'(s))) ¥ dz.e.
This is clearly holomorphic in m’.

Remark (3.6). — A more general method to get horizontal linear forms on R! =, L
is to start with a C®-trivialization of (Py, L) giving ¢, :P,>P., L, ¢ L.,
and with LV-valued cycle or current C on P,, and to take Lm" . For instance, if
C is a path from m(s) to m(¢), together with a section ¢ of LY on it, one deforms it with m’
so that G(m’) remains a path from m'(s) to m'(¢t).

(3-7) The group G of automorphisms of P is isomorphic to PGL(2). Its action
on P induces an action on M C P3 on the space Py, and on the flat projective
bundle B(a)y on M. The section w, is preserved. The action on M is free. Let
Q = M/G. The fiber bundle Py, the flat bundle B(«)y and w, being equivariant,
they descend to a fiber bundle Py, a flat projective space bundle B(«)q and a section w,
of B(a)q >Q.

For P -: P!, and for g, b, ¢ distinct in S, let My C M be the space of m such that
m(a) = o0, m(b) =1, m(c) = ®. One has PGL(2) x My > M. The quotient map
hence induces an isomorphism My Q, and via this isomorphism, B(a)q and w,
can be identified with the restriction of B(a)y and w, to M,.
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(3.8) Fix a base point 0 € Q. The section w, can then be viewed as a multi-
valued map from Q to B(x),. More precisely, let § be the covering of Q corresponding
to the kernel of the monodromy action p of =,(Q , 0) on B(«),, i.e. let Qbe the quotient
lly Ker(p) of the universal covering of (Q,0). The pull back of B(«x)q on Q is
Q x B(«),, and w, becomes a m;(Q , 0)-equivariant map #, from Q to B(«)

0°

Proposition (3.9). — @,: Q — B(a), is étale.

Proof. — We may take P = P! and replace Q by M, asin (3.7). The problem
is local. Take m e M,, let ¢ be a trivialization of L—near m—on R* near 0. We
may take

o= Il (z—m(s))%.dz.e

m(s) + ©

(cf. (2.8)). Choose cycles C; as in (3.5.4). Differentiating in m, one has

dMo fc;w = Jc;dxo w,

s dm(s)

with dy » = it S
M"w s¥ab, e z—m(.y)

The spaces Qand B(a), have the same dimension N — 3. The map @, is hence
étale at m if and only if d(@,) is injective, i.e. if and only if for no tangent vector » + o

at m is the family (9, | ) proportional to the family of integrals o), Le. if
Y \% ], @); ProP g ¢; @);

and only if for no » the cohomology class of 9,  is proportional to that of w. This
mecans that the cohomology class of any non-trivial linear combination

N =aw 4+ = beo

s+a,bc 2 — m(s)

should be non-trivial. If 4, + o, 7 is of valuation exactly »,(w) — 1 at s, and hence
7w +o0. If b, =o0, the valuation is > »,. This shows that 7 + o and that

> > X _(N—a)= —9 — (N —2) —1 —
Soam2 S~ (N—3=—2-N=-3=1-N,
so that the non vanishing of the class of v results from (2.14).

(3.10) We will now assume that |«,| =1 and that the numbers p, defined
by «, = exp(2miy,), o< p <1, satisfy Zp, = 2.

Locally on M, L admits a horizontal positive definite Hermitian form ( , ), unique
up to a positive real factor (2.18, 3.3). It induces on R! =, L a horizontal Hermitian

form (,)= :—ml ¢ (2.18), of signature (1, N — 3) (2.21). The vectors on which

( , ) is positive define a horizontal family of complex balls B*(a)y C B(x)y, and the
section w, is in B*(«)y (2.20) (for the meaning of the term ¢ complex ball ”, see § 5).
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The family B*(«)y is equivariant, hence descends to B¥(a)y C B(a)q. The étale
map of (3.9) is a map

(3-10.1) Q - B*(a),,

equivariant with respect to the action of =, (Q , 0) on B*(«),. This action is a morphism

27

(3.10.2) 7,(Q, 0) - PU (HI(PO, L), — ¢).
Notation being as above, our main result is the

Theorem (3.11). — Assume that
(INT) The numbers ., defined by o, = exp(2m;p,), o< u,< 1, satisfy Zp, =2 and,
for all s+t in'S such that p, + p, <1, (1 — @, — @)~ ' is an integer.

Then, the image T of (3.10.2) is a lattice in the projective unitary group

PU (Hl(Po, L), — ¢) ~ PU(1,N — 3).
T

The theorem will be proved in section 11, where it is restated as theorem (11.4).
The strategy of the proof is presented in the next paragraphs.

In § 4, we define a partial compactification Q ,, of Q. We also dcfine a compac-
tification Q ., with Q,,2Q,2Q and Q,, —Q, finite. In § 8, we recall
a construction of R. H. Fox to dcfine the completion Q',t (resp. Qm) of Q over Q ,,
(resp. Q,.). When the condition (INT) is satisfied, one can show that each point y
of Q ,, admits open neighborhoods U such that the inverse image of U in Q is a disjoint
sum of finite coverings of U n Q.. The completion Q,, i1s then a normal analytic
space; it is the normal ramified covering of Q) ,, extending Q

The results of § 6 allow us, in § 8, to extend @, to a map from Q“ to B*(a),. We
will again write @, for the extended map. In § 9, we show that the condition INT
is tantamount to requiring this extended map to be étale in codimension one. Since
the projection Q" —Q,, 1Is locally (on Q“) finite to one, and Q" is a normal
analytic space, it follows from § 6 that the extended map ), : Q“ — B*(«), is locally
finitc to one. By the purity of the branch locus theorem, if @, is étale in codimension
one, it is then étale everywhere. Actually, we give two proofs of this fact in § 10, the
second proof not requiring the theorem on purity of branch locus. Additional work,
relying on the compactness of Q,,, shows that ), : Q“ — Bf(«), is a topological
covering map. The ball being simply connected, it is an isomorphism. In other
words, the inverse of the multivalued map w, is a single valued map w;':B*(x), > Q.

The homcomorphism #, transforms the fibers of the projection Qu ->Q .
into the orbits of I'. Those orbits are hence discrete, and I' is a discrete subgroup of
the Lie group PU(1, N - 3) of isometries of B"(x),. When Q,=0Q,,, the
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quotient B¥(a)y/T" >~ Q ., is compact, and I' is cocompact. In the general case, a
local analysis near the cusps p € Q ., — Q,, shows that it has finite covolume.

For N = 3, the group PU(1, o) is trivial and the statement (3.11) unintcresting.
For N> 4, it is not at once clear that (1 — p; — w)™' must be an integer for all
? # j under condition INT (cf. (14.2.1)). It is easy to see however that condition INT
implies that all yu, are rational. We show this, even though it is not used in our proof.

Lemma (3.312). -— Assume that card S > 4. If positive real numbers (v,), o5 sum up
to 2 and if for each of the pairs of elements s+t of S for which v, 4+ v,< 1, v, +v, is

rational, then all v, are rational.

We may and shall assume that S is the set of integer from 1 to N, N> 4, and
that v, < ... < vy

Case 1. — v, + vy > 1. For any distinct 7, <N one can find 2 <N distinct
from ¢z and j. One has v, + vy2 v, + vy > 1, hence

v tv<2— (v v

is rational. If three numbers q, 4, ¢, arc such that a 4+ b, & + ¢ and ¢ + a are rational,
they are rational. Applying this to the v; (i < N), we find that they are rational.
So is vy, because v, = 2,

Case 2. — v; + vy< 1. In this case, for any ¢+ 1, v, +v<v,+ <1 18
rational. Summing, one concludes that (N —2)v, +2v,=(N—2)v, +2 is
rational: v, is rational, and so are the v; (Z % 1).

(3-13) Next, we explain how local systems L with the prescribed monodromy «
in the fiber direction can be constructed globally above M on Py. Fix three distinct
elements a,b,c€S. For each m in M, there is then a unique isomorphism P — P!
mapping m(a), m(b), m(c) respectively to o, 1, co. Let z:Py — P' be the resulting
map. When no ambiguity results, we will write 2(x) for z(x,m). Let A:M —»>R*
be a large enough continuous function. What is needed is that [A(m), co[ be disjoint
from z(m(S)). For any U CM, let I;; denote the locus of (x,m) e n=(U) such that
z(x,m) € [A(m),[. If UCM is contractible, then I;CPy is too. For UCM
contractible, if L is a local system on n~!(U) with the prescribed monodromy « (cf. (3.3)),
then L; admits an horizontal section ey +0 on Iy. The pair (Ly,¢y) is unique
up to unique isomorphism, hence there is no problem in glueing. One gets a global
local system L on Py, provided with an horizontal section e on I.

Let My={meM|m(a) =o0,m(b) =1,m(c) =} as in (3.7). The product
decomposition PGL(2) X My > M induces an isomorphism PGL(2) X Py, = Py; and
if one takes A(m) constant on the PGL(2) orbits, so that Iy is the pullback of Iy, the
system (Ly, ¢) is the pull back of its restriction to Py .
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(3.14) We give two other descriptions of the same L. Fix numbers g, such
that o, = exp(2wiy,). Let L, be the subsheaf of @ (cf. § 2) consisting of those functions
which are constant multiples of Il (z — z(m(s)))*. This function is multivalued

8¥c

but the ratio of two determinations is a constant, so that the definition of L, makes
sense. If p’ is another choice of p, with o, = exp(2nip,), the multiplication by the
univalued function [ (z — z(m(s)))*~* is an isomorphism of L, with L,..

s¥e

The principal determination of the multivalued function (z — z(m(s)))* on Iy
is defined as exp(p, log(z — z(m(s)))) with |arglog(z — z(m(s)))] < =i for z real and
large enough. This provides a section of L, on I;. One easily checks that L, has
the monodromy « on each fibre.

An identical but more algebraic description of L, is: the local system of horizontal
sections of O, provided with the connection V, for which

&5 wldz— da(m(s)
f TS A am()

fIS

(3-15) We close section 3 with some remarks about liftings of the projective
representation

0: m(Q,0) > PU (HI(P.,, L), — ¢)

27

to a linear represcntation.

As in (3.7) and (3.13), fix threc elements g, 4, ¢ in S and denote by M, the subset
of M with m(a) = o, m(b) =1 and m(c) = co. Let M(c) denote the subset of m e M
with m(c) = oo, and let B denote the stabilizer of 0 in PGL(2). One has M, > Q and

B x M, > M(c), PGL(2) x My> M.
As is well known,

m,(PGL(2)) = =,(PU(2)) = m,(SU(2)/ 1) = ZJ2

and m(B) = m(Cx C) =1Z,
so that

(3.15.1) ™M) & m(Q) X Z/2,
(3.15.2) m(M() & m(Q) X Z.

Both those isomorphisms depend on the choices of a, b, c.
For X any of Q, M(¢c) or M, each choice of a local system L on Py with fiberwise
monodromy « leads to a lifting
0" : =, (X, 0) - GL(HY(P,, L))
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of 6. If L carries a unitary structure, 9’ has values in U (HI(PO, L), : 4:). For
2mt
instance, the L of (3.12) carries a unique unitary structure for which ¢ is of length one,

and its restriction to My, > Q provides a lifting 0’ : n,(Q ,0) > U (H‘(Po, L,), :—ml ¢) .

The local system L itself provides a lifting 6" : =,(M,0) - U (Hl(Pa, L), :—I) which
)

is trivial on the second factor of the decomposition (3.15.1).
Let L(¢c) denote the local system on Py, which is given by the subsheaf of 0
consisting of those functions which are constant multiples of

I (z — m(s))*.

s+c

Here, zis a fixed coordinate on P composed with P X M(¢) - P and not asin (3.12) and

(3.13). The local system L(¢) provides a lifting 0’ : =;(M(¢c)) - U (HI(PO, L), ——I ¢)
of 0. 2
Inasmuch as M(c) is the space of distinct (N — 1)-uples of points in the plane
(N = card S), =,(M(c)) is by definition the colored braid group on (N — 1) strands.
For any s,teS — ¢, let v, in m;(M(c)) be a path in which ¢ comes near s, makes a
positive turn around s and comes back to its original position. The colored braid group
is generated by such elements. The lifting 0’ provided by L(¢) has the virtue that
each 0'(y, ) is a pseudo-reflection (i.e. 6'(y,,) — 1 is of rank one)—cf. (9.1), (12.3).

4. The compactified quotient space Q .,

(4.0) As in section 3, we fix a complex projective line P, an integer N> 3 and
a finite set S with N elements. We further fix a family p = (u,),cs of real numbers
with o< g, <1 and

Zp, = 2.

The complex numbers o, := exp(2niy,) satisfy |«,| =1, o, #+1 and e, =1.

As in section 3, M C P® is the space of injective maps y: M — P. We dcnote
by PGL(2) the group of automorphisms of P.

These conventions will hold throughout this section as well as in sections 6 to 12.
In this section, from (4.2) on, P will be the standard projective line P:=P! = C U {0}
and M the space of S-uples of distinct points of the Riemann sphere. This is no loss
of generality.

(4.x) The group PGL(2) operates diagonally on PS5,  We shall define a compacti-
fication of the quotient space Q := PGL(2)\ M. The definition is taken from D. Mum-
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ford’s theory of quotient varieties of reductive groups (cf. (4.6)). The account here
is self-contained.

A point y € P3 is called p-stable (resp. semi-stable) if and only if for all zeP,
(4.1.1) 2 p, <1 (resp. <1).

yia) =3
The set of all p-stable points (resp. p-semi-stable points) is denoted
Mst (rCSP- Msst)

and we set M, = M, — M,,.
For cach partition {S,,S;}of S with X p, =1 (i =1,2), the points y in P8
sE8;
for which »(S;) Nn»(S;) = # and » constant on S; or S, are in M
in M,,,, are obtained in this way, each from a unique partition.

On M_, we define a relation £ via

st

All points

ousp *

y = (&) if and only if either
a) y,9 eM,, and » €PGL(2)y or
b) y,9' € My, and the partitions of S corresponding to y and y’ coincide.
It is clear that £ is an equivalence relation. Set

Q.ust = Msst/‘@’ Q..st = Mst/‘%’ Q..ousp = Mcusp/‘%

each with its quotient topology. The clements of Q ., are uniquely determined by
their partitions. Thus Q ,,, is a finite set.

7 — 23 2z, — 2
! L ! of four

Example (4.2). — The cross-ratio ¢(zy, 2, 23, 2,) =
Z3— Zg %4 — 2y

points in P :.= P! js defined and is a continuous map into P! as long as no three of z,,
Zg, 23, %z, are equal. When two of the z; are equal, the cross-ratio takes one of the
values 0, 1, o, the value depending only on the partition of {1, 2, 3, 4} consisting of
the subset {7,j} with z =z, and its complement. Suppose S ={1,2,3,4} and

1 .
e =5 for all s €S. One can show that the cross-ratio map M,, — P' descends

88t

to Q ., and yields a homeomorphism onto the projective line.

(4.3) Let M’ be the space of y e PS such that y(S) has at least three distinct
points, and let Q' = PGL(2)\M’ be the corresponding quotient orbit space. Fix
a, b, ¢ in S, let U be the set of all y e M’ taking distinct values on q, b, ¢, and let U,
be the subset of all y e M for which y(a) = o, y(b) = 1, y(¢) = . Then Uisin M,
stable under the action of PGL(2), and PGL(2) x Uy > U. Hence

U, = PGL(2)\U & Q.

As one varies a, b, ¢, the images of U, in Q' cover Q'. Consequently Q' is a manifold.
However, this manifold is not Hausdorff if card S> g. For card S == 4 (cf. (4.2))
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one gets the projective line with o, 1 and o doubled. One infers from (4.1.1) that
M, , C M’. The quotient Q ,, being open in Q' is a manifold. The following Lemma
implies that it is Hausdorff.

Lemma (4.3). — Q.. s Hausdorff.

Progf. — Let F denotc the set of injective maps of {1, 2, 3,4} into S. For any
fe€F, let M, denote the set of all y e M, such that card(yf) "(z) <2 for all
zeP and additionally, if y e M, cardf~!(S;) =2 for ¢{=1,2 where {S,,S,}
is the partition of S corresponding to y. The additional condition guarantees that
M, "M, as well as M, n M, is #-saturated.

For any f in F, define ¢,: M, — P via the cross-ratio:
() = ¢(2f(1),2f(2), 21(3), 2f(4));

the function ¢; is constant on #-equivalence classes of the #-saturated set M;. Inasmuch

cusp

as ¢, is continuous on M, it descends to a continuous function on M/#. To prove
the lemma, it suffices to prove:

(4.3.1) For any y = y' mod #, thercis an feF such that y and y' arc in M,
and () *+ ¢(¥).

One is free to replace y and »" by y, and y; with y = »(£), »' = y(Z).

To cach y in M,,, we attach a partition of S as follows: for y e M, ,, attach
the partition defined in (4.1); for y e M,,, attach the partition T ={C,, ..., C}
such that y(s) = »(¢) if and only if s and ¢ lic in the same coset of T. If y = y,(£),
the same partition is attached to » and y;. In the proof of (4.3.1), we may and shall
assume that if y or " is in M_,., then it is constant on the cosets of its partition.
cspe L€t {S;, S} and {S{, 5,} be
their corresponding partitions of S. Since y % 3’ mod #, §;NS; is not empty for
t,7 €{1, 2}; otherwise, if say S, N S; = 2, we would have S, CS{, S, £S5 and

We first treat the case that y and y' are in M

by

ot Y
s€8,— 8,

contradicting o< p, for each seS. Choose f so that card f~!(5;nS;) =1 for
each choice of #,j e{1,2}. Then for suitable choice of f we have

2(1),2/(2),2/(3), 2/(4) = a, 4,5, b,

Y)Y f2),5 f(3), ) fl4) =a,¥,a,¥,
with a % b, a’ 4 b'. Hence

() =1, ) =o.

Suppose next that y e M, and » eM,. Let T ={C} be the partition
of S corresponding to 3" by (4.2). Each coset in the partition of S corresponding to y
must meet at least two distinct cosets of T. We can thus choose an feF so that
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_}’f(l),]f(Q),]f(B),)’f(l}) = a, a, b, b:
Y1), Y fl2), ¥ f(3), 5 fla) = &, ¥, ¢ 4,

with @ £ b, 4’ +b’, and ¢ +d. It follows at once that y and )" are in M;, ¢(y) =1,
G(y) * 1.

It remains only to consider the case where y and y* are in M,,; let T and T’ be
the corresponding partitions of S. If T =T, then for any feF, yeM, if and
only if € M;. Replacing y' by an clement in its PGL(2)-orbit, we can assume that
there are three distinct cosets C,;, C,, C3 of T with y(s) -='(s) for s e G, U Gy L C;.
If ¢(y) =¢(y) for all f with yeM,, then clearly y =»'. Onc is thus reduced
to the case where T + T’. Then thereisa C,eT and C] €T’ such that C, n Cj
is not empty and C, % C,.

Either C, — C, or Cj — C, is not empty—say C; — C, # 2. Choose C,eT
so that Cj NGy + . Choose C; €T’ with Cj #+ G{. Next choose C,eT so that
C,NnGC;+ 9. Then C;uUC, +8S; otherwise, since ' and y are in M,,,

2< X p,+ 2 <141
sEC;

3€C;
Choose f:{1,2,3,4} > S with
f()eCinC, fl2)eCGnG, JfB)eCGnG, fl4)e¢CuC.
Any such f is injective, and
2(1),(2),2(3),0f(4) = @, b,¢,d,  with a+b, c+d
Y1), 5 f(2), 5 f3), ) fl4) = d', &, b, ¢ with @' + ¥, o % ¢
Hence ¢(y') =1, ¢(») # 1. This complctes the proof.

Lemma (4.4.1). — Fix a Riemannian metric on P, Let & be the set of all subsets T
of S with X w,> 1. For y eP3, define
scT

d(y) = jnf diam y(T)

and a(y) = sup d(gy).

7 EPGL(2)

Then there is a> o such that a(y) > a for all y e M,.

Proof. -— The validity of the lemma is independent of the chosen metric. We
will use the Fubini metric (for which P is isometric to the sphere of radius 1) and prove
the lemma with a = =/4.

If yeMy,
let us take g to fix ¥(S,;) and the antipodal point # of P and to carry the complement
of the e-neighborhood of y(S,) into the e-neighborhood of u. Taking e — o0, one gets

d(y) ==

corresponds to the partition {$,, S,} of S, with y constant on §,,
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For any e, there is a compact K CPGL(2) such that for g ¢ K, g maps the
complement of the e-neighborhood of some point # into the e-neighborhood of some
point v. If y e M,, and if e is small enough, then, for all u, {s €S| dist( y(s), u) > €}
is in &. This implies d(g) - o0 for g - o in PGL(2). The sup defining a(y) is
hence attained. Fix y e M,, with a(y) = d(y). We have to prove d(y) > a = =n/4.

Suppose to the contrary that d(y) < a. Fix T, €& with diamy(T,) <a and
teT,. Forany T, T, in &, T, nTy,+9. If S is the union of all T € & with
diam y(T) < a, »(S’) is hence contained in a half-sphere of radius r < 24 = w2 with
center y(¢). In particular, y(S') is contained in an open halfsphere. Identify P with
the Riemann sphere o U oo, with the unit disc the halfsphere, in such a way that y(S’)
lies in D ={z]|z| <4}, 6<1. Take for g the multiplication by 1 4+ ¢, e>o.
For ¢ small enough (relative to ), distances in D are increased by g. For any T e &
with diam »(T) < a, one hence has diam gy(T) > diam y(T). For T e& with
diam »(T) > a, diam y(T) can decrease, but not much for € small, so that d(gy) > d(y).
This contradicts the choice of y.

Lemma (4.4.2). — Q.. s compact.

Fix a> o0 as in (4.4.1), and define M’'CP® to be the set of y such that
diam (T) > a for each TCS with X p,> 1. The subset M’ of P® is closed,

s€T
hence compact. Itis contained in M, and, by (4.4.1), it maps onto Q ,,,. Compact-

ness follows.

(4.5) By contrast with Q, which is a manifold, the points of Q,,,, may be
singular.

Let ¢ dcnote the natural projection of M,,, onto Q... Let {S,;,S/} be the
partition corresponding to a point y, € M,,,. We shall describe a neighborhood
of $(»,) in Q.. We can assume that y,(s) =o for all se§; and y,(s) = o for
all seS;. VYix elements a€S; and b eS|, and define V as the set of all y e M,
such that y(a) = o0, y(b) = 0 and

sup | y(s)| < inf | y(s)|.
sE 8, 8ES;

Then, y(V) is an open ncighborhood of y{y,) in Q ,,, and is the quotient of V by the
equivalence relation on V induced by #. The punctured neighborhood ¢(V) — ¢(,)
is the quotient of V — ¢~ '¢(y,) by the stabilizer in PGL(2) of the points o and co:

(V) —4(2) = (V=9 o()/C.
Set S, =S; —{a}, S5 =S] —{b}, m = card(S,), m' = card(S;) and consider
the composite map
B: V>CHxCH=C"xC" —->C™
I (V)sess (DT Nses) P () D)™ Dses,res:
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The map B descends to an embedding of &(V) inro C™, whose image is the inter-
section of the cone over the Veronese embedding of P"~!x P™~! in P™ ! with
the polydisc of radius 1 (|#,,| < 1).

If m=1 or m" =1, the Veronese embedding is an isomorphism with P™ 1,
As a consequence

(4-5-1) If card(S,) = 2 or card(S]) = 2, the cusp point with partition {S,, S;}
is non singular.

One can define an algebraic structure on Q,, by using as a chart at a point
PGL(2) y of Q, the orbit space

PGL(2\{)" € M, [»'(2) +5'(J) i 5() +5(j)}
and at a cusp point with partition {S,, S|} the Zariski-open subset of the Veronesc cone
of P"~1x P™~! in C™ given by

xy=y(0) @) £1, for all seS;, te§].

Example 1. — S ={1,2,3,4,5}, p.,=§ for all seS.

Here therc are no cusp points: Q.. = Q. = PGL(2)\M,,. Each pair s, ¢
in S defines the diagonal line L, ,: y(s) == »(t) in M,, and under the projection to Q ,,,
one gets 10 lines. The map of M,, to (P')? given by

(J15 92,035 Y45 05) P (0,0, 1, (D15 Y25 V35> 76) "5 €( D15 V25 Y35 35) 1)

(where ¢ denotes cross-ratio) descends to a map p of Q ,, which is biregular except at
Lo = p 10, 0), Ly = p7(1, 1), Ly, = p7 (0, ). Here, Q ,, is a blowup of P! x P,
Each of the curves p~!(0, 0), p™ (1, 1), p~'(0, ) are exceptional, that is, each has self-
intersection — 1. Inasmuch as the set of lines {L;,7+j1,j€S} are permuted
transitively by permutation of coordinates in M,,, their images in Q ,, are also permuted
transitively and thus each of the 10 lines is exceptional. The 1o lines of Q ., consist
of p~%0, 0), p~!(1, 1), p~ (o0, @), and the p-lifts of the seven lines on P! x P!

o o
X =1, Yy =<1, X =Yy
(0] [02]

where % = ¢( 73,92, 78,90) " J = €(91: 72,935 93)
I 111 2

Example 2. S={1,2,3,4,5}, ¢ (3,3,3,3,3).

Here therc are four points in Q ,,,, corresponding to the partitions {§;, S;} where
S;={i,5}, 1<i<4. Q.. is a non-singular manifold by (4.5.3). This Q ,,
can be obtained from the @ ., of Example 1 by blowing down the four lines Ly
(1 <i<4). It can be obtained from P'x P' by blowing up the point (o0, ) and
then blowing down the lines ¥ = o and y = . The resulting space is P,.
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(4.6) We conclude this section by relating our Q ., to Mumford’s when all
the p, are rational.

Let O(n) be the line bundle on P of degree n, and let Qp be the canonical line
bundle on P; i.e. Qf = O(— 2). For any linc bundle % we write # for the dual
line bundle and #®* = (£)®" for 1< o.

Let D be the common denominator for {y,,s € S}. On P8 define the line bundle

%, = B o2 Du) = @ priciope ).
It admits a PGL(2)-action coming from the action on the tangent bundle fl}, = 0(2).
The stable and semi-stable points of P® defined in (4.1) are the same as those defined
in Mumford’s ¢ Geometric Invariant Theory ” for the action of PGL(2) on the linear
space of holomorphic sections of £,; Q ., is the underlying topological space of
Mumford’s ¢ quotient variety ” for PGL(2)\P® [15].

5. The complex ball

(5-1) Let V be a complex vector space, and (, ) be a Hermitian form on V, of
signature (1,dimV —1). The complex ball B* in P(V) : = { 1-dimensional subspaces of V'}
corresponding to ( , ) is theset oflinesin V which arcspanned by a vector s with (v, v) > o.
The form ( , ) is determined, up to a positive real factor, by B¥, The closure B* of B+
in P(V) is the sct of lines spanned by a non zero vector v such that (v, v) > o.

(5-2) The hyperbolic angle © € R* between lines ¢,,¢, € B*, spanned by vectors v,, v,,
is dcfined by

(5-2.1) [(2,5 2,) | = cosh(8) (v,, )" (vp, v,)"2.

It remains unchanged when ( , ) is replaced by a positive multiple.

The angle 6(¢,,¢,) is 2 Riemannian distance on B*. It is invariant by the action
of the unitary group U(V) on B* and renders B* a Hermitian symmetric space.

By continuity we extend the function 8(¢,, —) to a function 6(¢,, —) from B* to
R* U {w0}:0(¢,¢) = o for £ edB*.

(5-3) Fix £ €9B". For » non zero in ¢, we define a “ distance from ¢ > function
on B* by
(5.3.1) d,(t,) = [ (v, 0)|/(v1, ,)'® for ¢, e B*, any v, % 0 in 4;;
(5-3.2) d(f) =o0, dl')=o0 for ¢ edB*, £ %/
The function d, is continuous and >0 on B* —{f}. One has d,,(¢) = [r]| d,(4),
and the family of functions d, (v e/ — {o}) is stable by the stabilizer of  in U(V).

(5-4) On B*, we will use the coarsest topology for which the functions 4, and 0(¢,, )
are continuous. A fundamental system of neighborhoods of # € B* (resp. of ¢ € 8B*—on
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which we choose v % 0) consistsofthe V, (e > o) definedby V, = {(¢; e B* | 6(¢,¢4,) < e}
(resp. V,={¢,|¢,=1¢ or £, eB" and d,(¢,) < e}).

This topology is finer than the one induced by the topology of P(V). It induces the
usual topology on B*, and the discrete one on éB*. It is respected by U(V).

Proposition (5.5). — Fix ¢ € @Bt and let A be a discrete subgroup of the projective unitary
group PU(V) stabilizing ¢ and respecting a ¢ distance to ¢ function d,. If ¢ has a neighborhood V
(in the topology 5.4) suck that V[A is compact, the volume of (V N B7)[A 1is finite.

The subgroup of PU (V) respecting ¢ and 4, is the isomorphic image of the stabilizer H
of zin U(V). Itisan extension of the unitary group U(s%/v) by the unipotent subgroup N
of H consisting of the n e U(V) respecting the filtration VD2t D Cv Do and acting
trivially on the successive quotients. The extension is split: H and N act transitively on
each horocycle d,(¢,) = C and the stabilizer of ¢, is a lifting of U(st/v).

Fix an isotropic vector o’ such that (v,0') =1, and let v, =02 + 2v'. The
line ¢, spanned by v, is in B* on the horocycle d, = 1. Let V' be spanned by v and v/,
and let V" be the orthogonal complement (=~ v*/s). Any kheH fixing ¢, fixes each
point of V’; hence the stabilizer of ¢, in His U(V"”)CU(V). Let ACU(V")CU(V)
be the group of unitary transformations a(d): v A7 'y, o' >’ (AeR*) and fixing
each point of V. It normalizes H: one has d,0a(A) = d;3p, = Ad,. Let
A® = {a(3) [A < R}. The map gi>gf;, maps isomorphically AFH/U(V"”) = A*N
onto {/, e B*|d,(¢;) <R}. The horocycles are closed in B" (for thc topology §5.4)-
The compactness assumption implies that for R small enough, {¢,]d,(f;) = R}/A is
compact. One has

M\a(R) H/U(V") 3 {t,] ,(¢s) = R}/A

and A is hence cocompact in H. It remains to e¢valuate the volume of

A\A*H/U(V") 3{f; e B| d,(£,) <R}/A

for a volume element on A® H/U(V"') which is AH-invariant, hence a multiple of the
image of da.dh on ARH. It is

f da.d/zzf dlf dh,
AARH A<R A JAavawH

and J dh =f dh = d(a(r)" ! ha(n))
A\aWH a(A)™ Aa(A\IL Al
= |det(Inta(r)~!, Lic H)| dh.
A\H
This leads us to evaluatcf det(Int a(2)~!, Lic H). One checks that the character
A<R

det(Int a(a)~', Lic H) of A e R** tends to zero for A — 0, and the integral is hence
finite.

The computation above is of course exactly the one used to prove that Siegel
domains have finite volume ({2 4], Lemma 1.9g).
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6. Stable points

(6.x) Notation and assumptions (4.0) are in force in this section as well as the
assumption N > 4. Our aim is to investigatc the asymptotic behaviour of the section o,
of B(a)y, for y e M converging to a stable point m € M,,.

Fix m ¢ M,,. To make a local study of w, near m, it will be convenient to iden-
tify P with P1, in such a way that o ¢ m(S). Let U be an open neighborhood of m
in M,,, such that o ¢y(S) for y € U. On the inverse image Py of U in Pp (3.1),
there is a rank one local system, trivialized at o by a section e over {0} x U, and with
monodromy « on P, for e U n M. A model of it is: the local system of constant
multiples of slels (z — y(s))%; the p, summing up to an integer, there is no ramification

at o0, A trivialisation for large positive real z is provided by the principal determination

of Il (z — y(s))%; it extends by continuity to a trivialisation ¢ at co. We normalize
sES

the Hermitian form ( , ) on L so that (¢, ¢) = 1.
For a general ye U, the monodromy of L, on P, around pey(S) is
[l «, =exp(eni & p,). The stability of y ensures that o< X% p <1, so that

ylsi=p yls)=p vist=p
this local monodromy is never trivial.

Fiber by fiber, we take as scction @ of Q'(Zy,.s) (L)
w, = SI(;_IS (z — y(s)) ¥ e.da.

On U n M, it depends holomorphically on y. The assumption of stability of y amounts
to saying that this form is of the first kind.

(6.2) The sheaf R'w Ly, for = the projection Py — U, is no longer a local
system if m ¢ M. Its fiber at m is H!(P,, L,) (> H'(P,, L,) by (2.6.1)). For each
h e HY(P,, L,), there is hence a uniquc germ A" of a scction of R'm Ly inducing 4
on P,. The vector space H(P,, L) being finite dimensional, this provides us on U
suitably small, with a map

(6.2.1) (constant sheaf HY(P,,L,)) - R'm L.

This map is compatible with the non degenerate Hermitian form ( , ), and hence
injective. Compatibility can be checked on the description given below. In parti-
cular, each ke H!(P,,L,) defines a horizontal section # of R'm L. on U nM,
We describe #°, for k& the class of a L,-valued compactly supported G* form %, whose
support is contained in a connected compact K containing oo, and for U connected and
small enough for K to be disjoint from »(S) for y e U. On K x UC Py, L is uniqucly
isomorphic to prj(L,), by an isomorphism which is the identity above m. It hence make
sense, in each fibre P, to take the same form ; it defines /13.
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(6.3) If we apply this to w,, we get an horizontal section cl{w,)? of R!m Ly
on UnM. As (o, 0, >0 (2.20), the same positivity holds for cl(w,)?, and,
projecting from R &, Ly to B(a)y, we get a section Pcl(aw,,)? of B(«)3;. We will compare
it with the holomorphic section w,, using fiber by fiber the metric (5.2).

Proposition (6.4). — 6(w,, Pcl(w,)?) tends to o for y € M tending to m.

Proof. — This will result at once from the two statements
(641) ((oy) (")y) _)(('om) (‘om) fOI'_}’ _)m;
(6.4.2) (00, cl(0,)?) = (0, ©,) for y —m.

If it made sense, we would like to say that , > w,, in the L%norm, for y —m,
but o, and w,, do not live in the same space, having different ramification. Let Ky be
the complement in P! of discs of radius R around each point of m(S). Onec assumes R
small enough for these discs to be disjoint; on a connected neighborhood U of y, small
enough for y(S) to stay disjoint from Ky, one can compare o, |Ky and o,| Ky : on
Kr x U, L~ pr{L,. There,onchasa C*-convergence of o, to w,. To prove (6.4.1),
it hence suffices to obtain a bound e(R), uniform in y, close to m, for the L2norm of the
restriction of , to a disk Dy of radius R around p e m(s), for any s eS8, this bound
being such that ¢(R) >0 for R —o.

We may assume R and U small enough so that y(s) ¢ D, if m(s) & p. This

ensures

IT |z — »(s)|7* < constant. (I)—[ [z — p(s)|™%,
m(s)=p
and the required estimate follows from the following lemma.

Lemma (6.5). — Let D be a disc of radius R, (a;); o be a family of points of D and (w;); <1
a family of real numbers, suck that o < p,< 1 and Zp,< 1. Then, writing z = x + 1y,
one has

R~ Tw)

H S B TH < ~ 28y =
fD |z —a| ™ dxdy < I21<R|zl dx dy 201 — )
Proof. — We may and shall assume D centered at o. If the real numbers p; are

such that 1> ;7 >, and Z 1o 1, Holder’s inequality gives

1/p;
fn Tz — a2 dedy <II U;) |z — a;| %% dx a’y] .
One has
ri Wby = om ————
0 2 — 2 b
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that the integral of |z — g;|"®" dxdy is bigger when taken on the disc Dg(g) of

radius R and center ¢; than when taken on Dg(0) results from the fact that |z — g,| 7%

is bigger on Dyg(a;) — Dg(o) than on Dg(o) -- Dg(g;): one has |z — g <R on

Di(a) — Dg(o), and |z — ¢;| > R on Dg(o) — Dg(a).
Using that Z1/p, = 1, we have

R2-2xip

f Mz — a| #dedy < H[Qﬂ. _
D - 2 — o by

1/pi
] = om RM =) G-t
with C = 2.II(1 — y;p,)/". Taking the p, such that the up, are all equal,
ie. p, = w; 'Zy;, one gets the result,

(6.6) Proof of (6.4.2). — For each p e m(S), let D, be a disc of radius R around p,
u, the solution on D, =D, —p of «, = du and ¢, the characteristic function of D,.
The current with compact support o, — dX¢,u, can be used to compute cl(e,)’.
One gets

2T P 2T

(mw Cl(“’m)b) = I"-J. 0, A @p — z _I—J ey, 1,5
Kg er

For y ->m, and R — o in such a way that the disc of radius 2R around p contains
all y(s) for m(s) = p, the first integral converges to (w,,, ®,), while the others cach
are O(R®), B=1 — ()Z ,- This concludes the proof.
mis)=p
(6.7) In the neighborhood of a stable point y € Q,, the projection of M,
to Q. has a section. Taking a pull-back by such a section, we get the following:

Corollary (6.8). — For y € Q,,, there exists a neighborhood V of y in Q , and a horizontal

section b, of B(a) on Q NV such that 8(b,(y'), w,(»')) =0 for 3 -y (¥ €Q).
For y € Q, the corollary just tells once more that the section w is continuous at y.

(6.9) A partition T of S is stable if for each CeT, u(T)g: = Ec n, is < 1.
s€
Define «(T), = exp(2nin(T);) = HC a,. For T stable, let M;C M,, be the space
=

of maps y from S to P, such that y(s) = y(¢) if and only if s and ¢ arc in the same coset
of T. It is the inverse image in M, of a subspace Q. of Q,. The Mg (resp. Q)
for T stable form a partition of M,, (resp. Q ,,) and each M (resp. Q) can be identified
with the analogue M(T) of M (resp. Q(T) of Q) for T, n(T), and its closure with the
analogue M,,(T) (resp. Q(T)) of M,, (resp. Q).

Fix m, U, L as in {6.1), with meM;. On M;nU, the Hi(PV, L) form a
local system. By (6.2.1), this local system, which is trivial as U is small enough, extends
as a trivial sublocal system of R'm Ly. The w, (y € My nU) dcfine a non-zero
holomorphic section of this local system on My N U. The corresponding ray can be
identified with the section ., of B(«(T)) on M(T).
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On Q,,, this gives us in a neighborhood V of y € Q:

a) A horizontal sub-ball-bundle of B(a), which extends as a constant horizontal
bundle on V. Its restriction to Qg can be identified with B(«(T)) on Q(T).

b) Via this identification, the horizontal section b, of (6.8) is the horizontal section
through w, ().

Proposition (6.10). — If u satisfies condition INT of (g3.11): o< p, <1, Zp, =2
and for all s+t in S such that p, + u, <1, (1 —p, — )~ ' is an integer, then any
subset GCS for which Zc s < 1 has at most three elements, and for any such subset with at least

s€

two elements, (1 — Zc p) "t is an integer.
8E

The condition INT implies that w@, + y, is always > 1/2 for s+ t. Averaging
over the pairs in CCS, we get that for card (C) > 2, the mcan of the p, (s € )

1s > 1/4. From Zc p, < 1 there results card (C) < 4.
s€
The case card (C) =2 is trivial by INT. Suppose C = {q,b,¢}. The

. I 1 1
relations 1 — g, —p=—, 1 —W,— P, =—, [ —p —,=-  sum up to
Bop Rye Ry

1/1 1 1 1 I I
1=y — My ~@e=-|—-+—+——1), hence —+ —+ —>1.
2 UM Tye Nea UM Tye (P

We now use the elementary fact that a triple of intcgers whose reciprocals have
their sum strictly greater than 1 must be one of

(2,2,7) (2,3,3) (2 3,4) (2,3,5)-
The excesses of the sums over 1 are respectively
1/n, 1/6, 1]12, 1/30.

It follows at once that (1 — p, — p, — 1)~ " is an integer.

Corollary (6.11). — If p satisfies INT and T is a stable partition of S (cf. (6.9)), the
Samily u.(T) defined by
w(To= T u, (CeT)

again satisfies IN'T.

7. Semi-stable points

(7.x) The notation and assumptions (4.0) are in force in this section; we assume
also N> 4. Let (S(1),S(2)) be a partition of S, such that X u ==1. We want

1€ 8(3)
to investigate the asymptotic behavior on Q of w,, for y converging to a pointin Q .,

of type (S(1), $(2)).
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Fix aeS(1) and b €S(2), identify P with P = P!, and let W be the space
of y €P? such that y(a) =0, y(b) = o, and

sup {|y(s)| | s € S(1)} <inf{| y(s)| [ s € S(2)}

(as in section 4 where we wrote V instead of W). We put A(y) =sup{|y(s)||seS(1)},
B(y) = inf{|y(s)| | s€S(2)}, C(y) = A(»)/B(y). The quotient map =: W —>Q,,
sends a point y with G(y) = o to the semistable point J of type (S(1), S(2)) and iden-
tifies (W — n~1(]))/G,, with a punctured neighborhood of J. One has convergence
of n(») to J if and only if G(») converges to o.

On Py, there is, up to a unique isomorphism, a unique rank one local system L,
trivialized on the annulus A(y) < |z| < B(y) by a section ¢, and which for y e M,
has fiberwise monodromy « (hence trivial monodromy around the annulus, as

IT «,=1). A model of it is the local system of constant multiples of

s € B(1)
I (z— @), 11 (I—L) .

sE8(1) s € 8(2) (%)

We normalize the Hermitian form ( , ) on L by (e, ¢) = 1.

For any y e W, fix R such that A(y) < R < B(y), and let w; be the L-valued
homology class represented by the cycle |z| = R in P, positively oriented and pro-
vided with e, the trivializing section of L. It can also be viewed as a class in H;(P,, L,).
For y =j, defined by j(S(1)) = o, j(S(2)) = oo, itis a gencrator of this H:. The o,
provide a horizontal section of R! =, L. Since (v, ®;) = 0, the line (w;) spanned
by w;y is in the boundary of the ball B¥(«), and the functions 4, of (5.3) provide a hori-
zontal family of ‘“ distance to Pw; > functions. We will use them to compare Pw; with
the holomorphic section w, of B(a)™.

Proposition (7.2). — For y variable in W, if C( y) tends to o, the d,, (w,) tend to o.

Proof. — Fiber by fiber w, is the line spanned by the cohomology class of

o= I (z—y()*. 11 (1 — i)—u‘.dz.e.

sE8(1 s € B(2) 5(5)

The form w,, as a function of y, is invariant by the action of G,, on (W, L). It hence
suffices to treat the case where A(y) -0, B(y) > . In that case, the numerator of

de(wu) = I((")J’ my)l/((‘)y’ wy)l/z
clearly tends to 1: it is the absolute value of
I

L M (z—ps)*. 11 (I—L)".dHL de _

2mt J), =1 s€801) “ses) (5
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We have to prove that (o,, ®,) —> . Indeed,
—2u,
1-- — .Jdz A dz)

(0 ) 2 7= |, I 12—y -

Aly) < |z) < $Bly) 8(1) 8(2)

By gy
~f 2.— ~ 2 |log CG(9)|-

2A(y) r

On Q, the proposition (7.2) has the following corollary:

Corollary (7.3). — For each semi-stable point y of Q... there is on a neighborhood V
of y a horizontal family of functions d on the balls B(a), (¥ €V N Q)—each a * distance to
a point of 0B(«), * function—such that d(w,(y')) —o for y' — y.

8. Extending #, by continuity

Let X, Y be complex algebraic varieties which are separated as algebraic varieties,
i.e. which are Hausdorff in their complex topology.

(8.1) One knows that any quasi-finite map f: X — Y—i.e. a map whose fibers

. . — i I s s . -
are finite—admits a factorization X &> X 5> Y, with j an open embedding, and f a

finite map (= quasi-finite and proper). If X and Y are connected and normal, of the
same dimension, there is an unique such factorization for which X is normal. One calls
this X the normalization of Y in X.

For more general spaccs, and for some maps with totally disconnected but possibly
infinitc fibers, a simple topological generalization of this construction has been given
by R. H. Fox [7].

The spaces X and Y are taken to bec Hausdorff and locally connected. A conti-
nuous map f: X — Y is called a spread if, for any x in X, one obtains a fundamental
system of neighborhoods of x by taking, for each necighborhood V of f(x), the connected
component of f~!(V) containing x. A spread f is called complete if, for any y €Y,

S7Hp) 3 proj lim mo( f7H(V)),

the projective limit being taken on the neighborhoods V of y.

Fox proves that cach spread f:X — Y can bc embedded in a complete spread
f:X —Y with the following universal property: any commutative diagram of solid
arrows

X
(8.x.1) T / r
1

41



42 P. DELIGNE AND G. D. MOSTOW

with f’ a complete spread, can be completed as shown. For any y €Y, one has
S 1) 3 proj lim =g (fH(V)),

the projective limit being taken on the neighborhoods V of y. It is clear from the uni-
versal property that X is unique up to unique isomorphism, and functorial. We will
call it the completion of X over Y. It contains X as a dense subspace, and the topology
of X is induced by that of X. The space X is locally connected.

(8.2) We dcfine a space X to be connected if it is non-empty and has no proper open
and closed subset.

A map f: X - Y iscalled a covering map if each y € Y has a neighborhood V for
which there exists a discrete set D (possibly empty), and a commutative diagram

g /(V) <= VxD

¢ rry

If Y is connected and X non-empty, such a map is onto.

Amap f: X - Y iscalled a local homeomorphism at x € X if x has a neighborhood U
which maps homeomorphically onto a ncighborhood of f(x). The map f is called a
local homeomorphism if this holds at all points x € X.

Assume that X is a connected covering space of a connected locally simply connected
open subset U of Y. The composed map X - U<« Y is then a spread. Assume
further that each y in Y has a fundamental system ¥, of open neighborhoods such that

(8.2.1) for Vin ¥, VN U is connected;
(8.2.2) for V'CV” in ¥, m(V' nU) 3wV’ nU).

As fis a local homeomorphism, X is open in X. As X is a covering of U, one has
further X = F~(U).

Fix a base point 0 € U. One knows that the functor (g: U~ U) - g7 4(0)
is an equivalence of the category of coverings of U with that of discrete sets on which
n,(U, 0) acts. In particular, the connected components of U correspond to the orbits
of 7,(U, 0) on g~*(0). For W open in U, connected and containing o, the same applies
to W and the restriction functor (g: U > U)o (Y (W) > W) from coverings of U to
coverings of W corresponds to the functor: restriction of the action of ,(U, o) to =, (W, o).
In particular, if U corresponds to =,(U, 0)/K, mo(g~* W) is 7, (W, 0)\ =, (U, 0)/K.

This applies to X. Ifalifting ¥of o is chosen in X, the map =,(U, 0) > f~!(0):66.7
identifies f~!(0) with a suitable homogencous space =,(U, 0)/K of m,(U, o).

Fix y €Y, and a neighborhood V € ¥7,. Let us assume at first that o€ V.
The decomposition group D, is then defined as the image of 7, (V. nU,0) in =, (U, o) and
one has

(S IV N U)) = DAm(U, 0)/K.
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For V'CV inv¥, (8.2.1) and (8.2.2) imply that wy( /= (V' nU)) 5 me(f~HV n 1))
hence

(8.2.3) S71() = DAm(U, 0)/K.

For o em(U,0)/K, .9 is a lifting of 0 in the connected component f~*(V), of
S~ (V) corresponding to the double coset D, 6K. Ifwe usc it asa base point, the fibre at
0 of the covering f~!(V), of V n U is identified with D, cK/K = D,/D, n cKs™'. To
the component f ~'(V), there corresponds a point ¥ in f~!(3). The f~Y(V),nf~Y(V’),
for V’ a neighborhood of y, are the trace on X of a fundamental system of neighborhood
of ¥ in X.

For o not necessarily in V, one chooses o' in V € U and a path p from o to ¢’ in U.
This path lifts as a path from % to some lifting 9’ et o’. It defines an isomorphism
of m,(U, o) with m,(U, o') via which the above constructions, which make sense for o',
can be pushed back into =, (U, 0). For instance, the decomposition group D, C =,(U, o)
is defined as the image of the decomposition group D, C =,(U, 0’). It depends on the
path p. One still has (8.2.3).

(8.2.4) A covering map f: X — U is normal if the =,(U, o) homogeneous space
S (o) is isomorphic to a homogeneous spaces =,(U, 0)/K, with K a normal subgroup.
If f: X — U is a normal covering map, the group w,(U, 0) acts on X by deck-trans-
formations, and this action extends to X by functoriality. We leave to the reader to
check that, under the conditions (8.2.1), (8.2.2), one has
1) (U, N\X 3 Y;
2) for each y €Y, the stabilizer in m,(U, 0) of a point ¥ in £~!( y) is the conjugate of the

decomposition group D, determined by a path in U corresponding to 7.

Remark. — Let K denote the kernel of the action of 7, (U, 0) on X. Then =,(U, 0)/K

acts properly discontinuously on X but not nccessarily on X.

(8.3) Let w be a continuous function from X to a topological space B. We
assume B regular, i.e. that any neighborhood of any point contains a closed neighborhood.
The function w then extends as a continuous function on X if and only if, for any ¥ e X,
w(x) has a limit for x - x in X (convergence of w on the filter of traces on X of neighbor-
hoods of ¥ in X).

In the situation (8.2) (with o € V for simplicity), one can treat w as a multivalued
functionon U. If¥in f~'(y) corresponds to the connected component f ~}(V), of f~'(V),
the restriction of w to f~(V), is a multivalued function w, on V n U. That w(x) has
a limit for x - ¥ means that there is 4 in B, and for each neighborhood W of # a neigh-
borhood V' of y, such that all determinations of w,(x), for « e V' n U, arein W,

Example (8.4). — If we take for Y the unit disk D C G, for U the punctured unit
disk D* and for X the universal covering of D*, the completion of X over D is deduced
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from X by adding onc point above 0:X = X U {0}. For A real > o, the function z*
has a limit for z — o in X, but it has no limit for non real A with #A> o. Similarly,
z.log z has no limit.

(8.5) With the assumptions (8.2.1) and (8.2.2) on (Y, U), let & be the flat
fiber space on U defined by an action 8 of =,(U, 0) on a regular topological space B,
and let (X, o) be the smallest covering of (U, o) on which % becomes trivial: one has
SHo) = =, (U, 0)/Ker(6). A continuous section w of # defines by pull-back to X an
equivariant continuous map from X to B (and conversely). We write w for this map.
When does it extend to X? Unravelling (8.3), we find that @ has a limit for x -3
above y if and only if there is a horizontal section b of # over the trace on U of a neigh-
borhood V € ¥, of y, toward which w converges for »' —y ()" € U), in the following
sense. For y; e VN U and W, a neighborhood of 4( y,) in the fibre 4, of # at y,,
there is a neighborhood V' of y such that for any y, e V' n U, and for W, a neighborhood
of b( y,) in the fiber of & at y,, obtained by horizontal transport of W, along any path
in VN U from y, to y,, one has w( »,) € W,. This holds if 4 has a system of horizontal
neighborhoods W which are fiber arbitrarily small, such that w( y,) isin W for y, close
enough to y. Of course, b defines the limit of w.

In the rest of section 8, the notation and assumptions (4.0) as well as the assumption N > 4
are in force.

(8.6) As in (3.8), fix a base point 0 €Q, and let p: (Q, 0) = (Q,0) be the
smallest covering of (Q, 0) on which the flat projective space bundle B(«), becomes
trivial. For QCYCQ,, and Y open in Q,,, the composed map Q —~Y is a
spread. We will write ¥ for the completion of Q over Y. The assumptions (8.2.1)
and (8.2.2) are satisfied by (Y, Q).

It follows from (8.2.4) that

(8.6.1) 7, (Q, 0) acts on stw
(8.6.2) 7 (Q, N Qe = Qg

Proposition (8.7). — The map W, of (3.8) extends as a continuous map from Qm to

the closed ball B(a)}, provided with the topology (5.4). The inverse image of B(«)} consists of
the stable points.

Proof. — We are in the situation envisioned in (8.5), if we take for & the flat

fiber space with fiber B(«);, complcting B(«);. That the extendability criterion of (8.6)

7]

applies is (6.8) for y stable and (7.3) for y semi-stable. Further, the limit occuring in
criterion (8.5) lies in 9B(«) if and only if y is in Q.-

The extended map Q ,,, — B(«)} is also denoted w,. Itism(Q, o)-equivariant.

o
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(8.8) For T a stable partition of S (cf. (6.9)), the system of the Q .., for T’ finer
than T, is topologically constant along Q ., and the inverse image QT of Q. in Q“
is hence a covering of Q. (~ Q(T)). By (6.9), on each connected component ¢,
of Q ;, the flat ball bundle B(«(T))" trivializes, and can be identified with a flat sub-ball
bundle of the constant bundle B(«),, in such a way that

0
(8.8.1) ZT)H(T)=Z71“|Q:'T.

From (3.9), we hence get:

Proposition (8.9). — For any component Q‘T of Q o, w, | Q‘T s an étale map from Q4
to a sub-ball of B(a);.

9. Codimension 1 etaleness

In this section, the notation and assumptions (4.0) as well as the assumption
N > 4 are continued.

Let T be a stable partition of S (cf. (6.9)), with card T = cardS — 1; one
coset of T has two elements and all others only one. Our aim in this section is to describe
the flat bundle B(a)q over Q (cf. (3.7)) and the holomorphic section w, in the neighbor-
hood of a point in Q,CQ ., (cf (6.9)).

(9.x) The subspace Q. of Q,,, defined in (6.9), is a locally closed purely one
codimensional complex submanifold of the complex manifold Q, and QU Q. 1s
open in Q... The monodromy around Q. is the following conjugacy class in =,(Q ).

Let ¢:D - Q u Q. be an embedding of the unit disc with ¢(D) transversal
to Qrand ¢ '(Q,) ={0}; ¢ induces an embedding of D*:=D — {0} in Q. The
fundamental group =,(D*) is canonically isomorphic to Z, generated by the loop
[0, 1] = D*: ¢t z,.exp(2nit). The decomposition group at ¢(o) is the image of =;(D*)
in ,;(Q ) and the monodromy around Q ; is defined as the image of the positive generator
of w;(D*). Both arc well defined up to conjugacy and independent of ¢. Let us fix a
base point 0 in Q. The fundamental group =,(Q, 0) acts on B(«),. We will compute
the action of the monodromy around Q..

Let {s,, 55} be the two clement coset of T and choose additional elements s4, s, € S.
We assume that P is the standard projective line P!, and we choose in it two distinct
points b,¢+ o. Let M, be the space of injective maps »:S —P with »(s,) = o,
y(s3) = b, y(s,) =¢. Let Myp be the space of maps S -~ P with »(s) = p(¢) if and
only if s and ¢ are in the same coset of T, and y(s;) = y(s,) = 0, ¥(s5) = b, y(sg) = ¢.
The quotient map M, — Q, induces isomorphisms My3 Q, My, >3 Q, and
M,uMg 53 QuQ,. We will work on My U M,,, rather than on QU Q..
The monodromy around Q ; is represented by the following loop in M, it starts from a
point y, with, for some 7, y,(s,) in the disc D, of radius r around o and the y,(s;) (i + 1, 2)
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outside of this disc; it is given by the map from [o, 1] to M,, ¢+, with y/(s;) constant
for i+ 2, and (s,) = y,(s;).exp(amit).

Above this loop, one can construct on Py, a local system L with fiberwise mono-
dromy « as follows: we fix a base point d on P, outside of yy(S) and of D,, and take for L
the local system trivialized on the constant section 4 and with the required monodromy.
The action of monodromy on B(«), = PH'(P,,L) is deduced from the action of
monodromy on H'(P,, L).

Proposition (9.2). — In a suitable basis of H'(P, , L), the above action of the monodromy
around Q) . ts given by a diagonal matrix diag(ay o, 1, ..., 1).

Proof. — Set S; ={s1,5,} and S; =S —8§,. Let T,, T, be trces as in (2.5)
with the vertices of T; in S; (1 =1,2) and let B: T,uT, - P be an embedding
with 8|S = y,. We may and shall assume that § | T, is the straight line segment from
Jo(51) = 0 to po(sy) and that B(T,) is outside of the disc D,. For each (open) cdge a
of T, or T,, we choose onc of its orientations, and a non zero section ¢(a) of p* L above
it. Asin (2.4), (2.5), each edge then defines a closed L-valued current ¢(z) (a), and
the cohomology classes of those currents form a basis of H'(P,, L). It is the basis we
will use.

To transport our basis elements around the loop y(o <¢< 1) horizontally, it
suffices to deform B with 8,|S =, dragging along the #(a). We will keep B,| T,
fixed and take for 8,| T, the family of straight line segments from y(s,) =o0 to
Ii(S2) = yo(s2) -exp(2mit). Outside of D,CP, the fibers P, and L remain constant,
and the ¢(a).B,| a for a an edge of T, are, as currents, independent of ¢. It follows
that the monodromy is trivial on the #(a).p | a for a an edge of T,. Let a be the unique
edge of T,. When B,(a) (0 < ¢t< 1) has made a complete turn around o, £(a) is mul-
tiplied by o, «,. Indeed, if p,(x):[o, 1] > P is a path from the base point d on P
to a point d, on B,(a), and if this path deforms with ¢ so as to always avoid £,(S), one
can take ¢(a) to be obtained at 4, by transporting along p, the trivialising section ¢ of L
atd. As the following picture shows, p, can be chosen to differ from p, by a loop around
Yols1) and yo(s,). Around this loop, L has monodromy o, «,, and the claim follows.

YQ {S,} yD (52} d
t= o: ) I (XX XY

Ve l(s,)
¢ small:
ya {S] }
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Remark (9.3). — In the computation (9.2), we have made use of the assumption
¢; + e < 1 only in the weaker form o, a3 + 1. In the case p; + p,> 1, the mono-
dromy when s, turns around s, would be given by the same formula, but the basis e in
which it holds would have (e;,¢) > o instead of (e, ¢;) < 0o: it would be a pseudo-
reflection with respect to a hyperplane not meeting the ball B(«)," .

More precisely, one checks that if the section #(a) of L, for a the only edge of T,,
is chosen of length one: (£(a),¢(a)) = 1, then

_1.2.(a1+1+a2+1)'

2wt o — 1 g — I

(81, el) =
We will not need this formula.

Remark (9.4). — For later computations, it will be more convenient to work with
the basis of the dual space HY(P — ,(S), LY) to HP — »,(S), L) given by a choice of
non zero sections ¢'(a) of B* LY above the edges of T, or T,. The same arguments as
in (g.2), show that on such a basis of the dual space, monodromy around Q. acts by

diag((oy )% 1, + -y 1)

(9.5) Fix » € Qy. We will describe the section w, of B(«)q near y. A neigh-
borhood of yin Q U Q ; and local coordinates are chosen as follows.  First, one replaces
QuUQ. by Myu Mg, asin (9.1). It is convenient to choose 4 and ¢, in the defi-
nition of M, so that o ¢ y(S) and that the discs of radius 1 around the points in y(S)
are disjoint. We do so. The chosen neighborhood U is then identified with the space
of meM,uU My such that |m(s) —y(s)|< 1. The chosen coordinates are the
m(s) — y(s) (s 5q1,83,8). If S :=8 —{s, 5,955,595}, this system of coordinates
identifies U with D x D¥, and U n M, with D*x D%,

We choose L as in (g.1), using a base point 4 on P at distance > 1 from y(S)—for
instance d a large positive real number. In U n M,, we choose a basc point me—for

instance with my(s,) = é and my(s) = y(s) for s+ s5,. We view w, as a multivalued
map from U N M, to B(a), = PHYP — my(S), L), and on H' (P — my(S), L) we
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use the coordinates provided by a basis (9.4) of the dual space. The multivalued map w,
then lifts to the multivalued map with values in C¥~3 having as coordinates (up to
multiplicative constants)

J';"(")z- Mz — m(sy)) " Il (2 — m(s))"%.dz

545, 8
as first coordinate and as the other coordinates the integrals

fn(z — m(s))" % dz

taken along a path remaining outside the disc |z|< 1 from one m(s) to another
(s # 5, 5,). When m(s,) turns once around m(s,), the first coordinate gets multiplied by
(@) @g) ™' = exp(2mi(1 — u, — y,)) while the others regain their value (9.4). This
allows us to write the first coordinate as (m(s,) — m(s;))} "1~ *2.I(m), with I(m) an
ordinary function on U N M,. When m tends to m, € My, I(m) tends to the limit
H — —Hs, ! — — — e

VI (—ml) 7 [Jamn(s = )7,
which is non zero (2.17.1), hence I(m) extends as a holomorphic function on U, invertible
on U N Mgy, The other coordinates extend as holomorphic functions on U, having
as restriction to U N My, integrals

J.z_"l"“z. I (z —m{s))».dz

8% 8y, 83

By (3.9) applied to wg, these functions on U N My, are the projective coordinates of an
etalc map from U N Mg, to the projective [(N — 1) — 3]-space (cf. (8.9)).

(9.6) In suitable local coordinates, the multivalued map w», from U n M,
to B(«),, has the form

(20, 2) &> (%77 %2 I(2y, 2)), J (2, 2);

here, (z,, z) are local coordinates on U coming from the product decomposition above,
U~Dx D", UnM,~D"x D" the local coordinates on the image of U in B(a),, are
selected on an open set V with V~ D x D* and {o} x D" lying in a hyperplane; and
finally, I: D x D"~ C and J:D x D" D" are holomorphic maps, with I{o, z) + o
and J(o, z) : D" —» D" etale.

At a point of {0} x D*C D x D", the holomorphic functions zy.I(z,, z)"/*~*1 4
and J(z,,2z); (1 <i<n) form a system of coordinates. In those coordinates, the

muitivalued map w, is
1—y, —
(2gy Zys -+ -5 2,) —> (g™ 7¥ 2y, .00, 2,).

n. n

Suppose 1 — p; — p, Is rational, set 1 —p, — p,={/k, in reduced terms.
If D is another copy of the disc, with coordinate u, mapping to D by up> o,
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the pull back to D x D* of the multivalued map above is the holomorphic map
(4, 21y ...y 2) +> (4, 2;, ..., 2). This map is etale in a neighborhood of

{o}xD"CDxD"

if and only if ¢ = 1, i.e. if and only if (1 — p; — py)7!

is an integer.

(9.7) Let Y be a complex analytic manifold, & a family of disjoint closed complex
analytic submanifolds purely of complex codimension 1, Z =L {H;He&}, and
x: & —>N a positive integer valued function.

A continuous map ¢ : R — Y is called a branched cover with branch locus Z of order x
if and only if:

1. ¢ induces a covering map from ¢~ (Y —Z) to Y — Z.

2. For any H €&, if we put k:=«(H), any y e H admits a neighborhood V
in Y such that the restriction of § to any connected component of ¢~*(V) is topologically
equivalent to the map

D" > D": (2y, ..., 2,) b (2, 23, - .., 2,).

n

A branched cover §: R — Y has a unique complex analytic manifold structure such
that ¢ is holomorphic.

(9.7.1) Let ¢:R Y be a branched cover with branch locus Z. It follows
from the definitions that ¢ is the completion of ¢=(Y -- Z) > Y over Y. Moreover,
given any commutative diagram

Q — Y —-Z)

| A

Y-—-Z

with p and ¢ spreads, then there is a diagram
Y — R

| A

Y

with p and ¢ the completions of the spreads above, which is also commutative by the
universal property of completions (8.1.1).

(9.8) Let Q be an open sct in a locally connected space Y. Let p: Q - Q be
a spread and denote by p also the completion Y >Y of p. Then for any open set U
in Y, the restriction of p to a connected component p~*(U)* of p~*(U) is the completion
of the spread o~} (U’ np~ ' (UNQ)->UNQ.
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(9.9) We now assume that the p, are rational (cf. (2.12)). Let &; dcnote the
family of stable partitions T of S such that card T = card S — 1. For Tin &, and {s, ¢}
the coset of T with two elements, let 2, be the denominator of 1 — p, — . Set

Ql Q.U H Q.Ta

TEE,
Q‘l = completion of Q over Q,,
k(Q) = ky for each T € &,.

Proposition (9.10). — The map Q, — Q, is a branched cover with branch locus U Q
of order x.

By (9.8), the problem is local around each ye Q.. The claim then
results from (g9.2) and the fact that the order in the projective unitary group of
diag(«, o, I, ..., 1) is the denominator of 1 — p, — y,.

Proposztzon (9.11). — The map 1w, :Q, > B*(x), is holomorphic.

For , is holomorphic on @ and is continuous on Q, by Proposition (8.7). Since
Q.- Q has C-codimension 1, the assertion follows from the theorem on removable
singularities.

Proposition (9.12). — Assume that
INT o< p, <1, Zp, =2 and forall s,t €S distinct and with p, + p, < 1,
(1 —p, — )t
Then, %,:Q, —B*(a), is etale.
This follows from the local description (g.6).

is an integer.

10. Proof of discreteness

In this section, the notation and assumptions (4.0) as well as the assumption
N > 4 are continued.

(r0.1) We will give two proofs that when condition INT is satisfied, the image I’
of n,(Q,0) in PU(1, N — 2) is discrete.

The first is shorter, but relies on a detailed local analysis of analytic varieties and
holds only when Q, = Q,,. The second is longer but more elementary—and
eventually more powerful.

(ro0.2) First proof. We follow the strategy explained in (2.13). The key point in
proving that the projection Q,, > Q,,, is locally (on (,,) finite-to-one is the following
lemma.
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Lemma (x0.3). — Let Dy, D, and Dy be three distinct lines in C2 passing through o, and
ny, g, Ny integers > 1 such that L + z + 1> 1. Fix a base point b € G2 — (D, U D, U D,),
ny nyg ng
and consider the coverings of (G* — (D, U D, U Dy), b), with ramification index along D
dividing n; (i = 1,2, 3): the monodromy permutation of the sheets, when turning around D;,
s of order dividing n,. Then the universal such covering is a finite covering.

Proof. — Therc exists a spherical triangle A with angles E, Tand Z. Let W be
Ty B g
the Coxeter group generated by the reflections along its edges. The wA (w e W)
form a tessellation of the sphere, and hence

-1
|W| = area(S?)/area(d) = 4 (i FLIL N 1) :
By My 7y
Let W* be the subgroup of index two in W consisting of the orientation preserving
elements. If we identify the sphere with the Riemann sphere metrized by its Fubini
metric, W* becomes a finite subgroup of PU(2), of order

-1
d:g(i+i+i_l) .

7y ng nig

The quotient P*/W+ is of genus o and hence is a projective line. Fix an isomor-
phism PY/W* ~ P! and let f: P' - P!/W* ~ P! be the quotient map. The pull-back
by f of the line bundle @(— 1) on P! is of degree the negative of d = deg(f) = |W*|.
Fix an isomorphism O(— 1)®%5 f*@(— 1). The group W7 acts naturally on
(PLf*O(— 1)) ~ (P, O(— 1)®%). Let H be the group of all automorphisms (&, ¢)
of (P!, O(— 1)) with (k, €®%) e W*. Itis a central extension of W* by y,, the group of
roots of unity of order dividing d.  As a space, the line bundle ¢(— 1), minus the o section,
is C®*—{o0}, the bundle map being the natural projection C?—{o}->P. The
action of H on G? —{o} is induced by a linear action on C% the contragredient of its
action on H°(P!, @(1)). The quotient map of the space (P!, O(— 1)) to its p, orbits
may be identified with a d-th power map of (P!, O(— 1)) to (P, O(— 1)®%, and the
quotient map g:C? — o to its H orbits is the composite of the d-th power map to the
total space of f* @(— 1) minus its zero section, followed by the quotient map to W+
orbits. Thus the quotient maps by H and W™ give rise to a commutative diagram

C* <> C —{o} — P

v
G« C—{o} — P
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The stability groups in W* of the vertices p,, p,, p3, of the original spherical triangle
are cyclic of order ny, n,, n3, and the points in the orbits of p,, p,, p3 are the only points
with a non trivial stabilizer (this results from the fact that the stabilizer in W of any
point of A is generated by the rcflections along the edges passing through the point
([4] V (3.3) prop. 1), or simply from the fact that A is a fundamental domain for W ([20])).
Let d; = f(p;) and D;C C? be the corresponding line. One easily checks that g ramifies
only along D,, D,, D, and that at each point above a pointof D; — {0}, the ramification
index is exactly n;. If X is a covering of C® — (D; U D, UD,) as in (10.3), its pull-
back by g can hence be extended to unbranched covering of €* — {o}. As C!—{o}
is simply connected, each connected component of this covering of C? — {0} is trivial.
This implies that the universal covering of type (10.3) is

g (C — (D, D, UDy)) > C — (D, UD, UDy).

It is finite.

Remark (10.4). — (i) The proof showed that the universal covering (10.3) is of
—172
order [2 (i + L + L 1) . It is a Galois covering, with group a central exten-
n, n; N
sion of W* by a cyclic group of order |[W*}|.

. 1 1 1
(i) If wpy+we=1——, pptug=1—— and py+p,=1——, one has
n3 n Ny

I — g — fg — h:é(nil +niz—{—nia— 1). The condition nil+ni2+ni3> I amounts
to w; + s + pg < 1, and when it holds (1 — p; — gy — ps)~' = |WT]| is an integer,
as observed in (6. 10).

(iii) The fundamental group of CG* — (D, U D, UD,;) is generated by three
elements vy, v2, Ys (Y: conjugate to a small positive loop around D) with relations those
expressing that y, v, 3 (conjugate to a small loop around o, on a general line D through o}
is central. To get H, one imposes the additional relations y/% = 1.

(iv) In the commutative diagram

g C— (D, uD, UDy)) < C

C—-DuDuDy) — C

C?, at the upper right corner, is the completion of g '(C* — (D; U D, U Dy))
over C*—at points of C* — {0} by (9.7.1) and at o by direct verification. Such a
fact is generally true for a finite morphism g of normal analytic spaces. The completion
of g }(C* — (D, uD, uD,;)) over C? thus acquires a structure of a normal analytic
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space—indeed of a non-singular analytic manifold; this structure is in fact the unique one
for which the projection to C? is analytic.

Remark (10.5). — Let J=J uJ’'u]J” be a finite index sct. For jeJ,

let my(j), ma( ), () satisfy - L4 L >y for jeJ”, let n(j) be any

integer > 1. We define 1) m(d) - ma())
X(j)=C —D,—D,~ D, CC forje],
C —{o} CcC?* forje]”,
c for jeJ".

The product X of the X(j) is the complement of a divisor in Y := (C)¥ x G,
The covering X of X, with ramification index along pr; Y(D;) dividing n,(j), (j€J'),
with ramification index along prj*({o}) dividing n(j) (j€]"), and universal with
respect to those properties, is the product of the corresponding coverings of each X(j).
Hence X is a finite covering of X. The completion ¥ of X over Y is similarly a product.
By (10.4) (iv), Y hasa unique structure of a normal (in fact non-singular) analytic space
for which the map to Y is analytic. If X,isa covering space of X and a quotient of X,
then }~(1 = X/G with G a finite group, and the completion \N('l of }’Zl over Y is ?/G. It
inherits the structure of a normal analytic space from Y.

Similar remarks apply with X replaced by the trace on X of a ball around o in
(CH)Y x G Uy,

Lemma (x0.6). — If condition (INT) is satisfied, Q ,, admits a structure of normal analytic
space, such that each y, € Q ,. has an open neighborhood U whose inverse image in Q ,, is a dis-
Joint sum of finite ramified coverings of U.

It suffices to show that each y,€ Q ,, has an open neighborhood U whose inverse
image in Q . is a digjoint sum of finite (topological) coverings of U n Q which, in
suitable local coordinates at y,, are of the type considered in (10.5). This we proceed
to show, using the control over ramification in codimension 1 provided by § 9.

Fix y, ¢ Q,;, and let T be the corresponding stable partition of S. Fix 4, b, ¢ in
distinct cosets. One can identify a neighborhood of 3, in Q ,, with a subspace in P®
whose clements take prescribed values on a, b, ¢. We arrange thesc values so that
© ¢ 95(S). Near y,, we then have the following system of local coordinates, depending
on the choice of a representative d(C) in each coset C:

a) the y(d(C)) — »,(d(C)), for C not the coset of @, b or ¢;
b) for each coset C, the y(¢) — y(d(C)) with e e C — {d(C)}.

In terms of thesc coordinates, the condition for » near y, to be in Q is: ¢) for G a
coset with three elements, (y(e) — »(d(C))).cc— a0y € C is not on any of the lines
2,=0, 23==0, 2z, =12, b) for C a coset with two elements, y(¢) —y(d(C)) # o
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(e e G, e+ d(C)). We recall that C has at most three elements (6.10.1), and that if C
has three elements x, y, z, the sum of the reciprocal of the integers (1 — p, — )7,
(1 —p— )™ (1 —p,—p) " is>1 (6.10).

For U a suitable open neighborhood of y in Q ,,, we can hence apply (10.5) to
the covering of U N Q, induced by § . We find that this covering breaks up into a
disjoint sum of finite covering of the type required.

Lemma (10.7). — If condition INT is satisfied, the map 1, : Q.. — B*(x), is etale.

The map %, is holomorphic on Q by (3.5) and continuous on Q ,, by (8.7). Itis
hence holomorphic on Q-r By (6.9), it has an injective differential on the strata of a
suitable analytic stratification. The fibers of %, hence have no component of dimen-
sion > o0 and @, is locally finite-to-one.

We know from § g that %, is etale outside of a closed analytic subset of Q" of
complex codimension > 2. By the purity of the branch locus theorem (the fact that the
branch locus is always purely of codimension one), it follows that @, is etale everywhere.

(r0.8) Let us now assume, in addition to INT, that Q,, = Q ,,., i.. that for
no S(1)CS is 2% w,=1. Choose a metric on Q,,. We provide Q,, with the

s€B8(1)
metric for which d(x, ) is the infimum of the lengths of paths from x to y, the length being

measured by its projection into Q ,,. What we need is a metric invariant by the action
of m,(Q , 0); any such metric will do. The space Q ,, is locally compact, and the pro-
jectionto Q . isopen. Since Q ,,is assumed to be compact, there is a compact K C Q..
mapping onto Q ,,. Since i, is etale, there are numbers 7, R> o such that for % €K,
the restriction of @, to the ball B (k) of radius r around % in Q" is an embedding, and

(10.8.1) w,(B,(k)) O Bg(i,(k)).

The n,(Q,, o) translates of K cover Q ,,. The map W, being equivariant, and the
action on the ball B* («), being via isometries, (10.8.1) holds for any k€ Q,t. The
map ), is hence a covering map. The ball being simply connected

%,:Q 3 B*(a),

is an isomorphism. This concludes the proof of (g.11) in the cocompact case
(Q. = Q.,), following the strategy outlined there.

(x0.9) Our second proof will bypass lemma (10.6). The purity of the branch
locus theorem can be deduced from the fact that, if Y is a complex submanifold of a
complex manifold X of complex codimension > 2, and B a small ball around y €Y,
then B — Y is simply connected. It is the latter fact which we will use directly to
prove (10.7%).

The reader who merely wants to get the idea of how we complete the proof when
Q.+ Q,. can skip to Proposition (10.18.1).
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(x0.10) Our second proof of (10.1.1) comes after proving that %, is etale on Q..
that in turn is proved in stages.

Set N ==cardS. For i between o and N — 3, set

Q;=1UQr

where T runs through all stable partitions of cardinality > card S — i. Then Q ,=Q,
Qu_2=Q,. Set Qy_,=0Q,,. Let Qi denote the completion of 3-Q
over Q; (i~1,...,N—2). We shall prove inductively that @, is etale on Q.

Proposition (10.17) below will be used repeatedly to show at each stage that as one
adds on a submanifold, the extended map @, remains etale. We lead up to it via some
general topological remarks, especially Proposition (10.15.1) and Corollary (10.15.4).

Proposition (10.11). — Let ¢ :X — Y be a continuous map with Y locally connected
and X Hausdorff. Assume that each y € Y admits a neighborhood V such that each x € ™ '(V)
has an open neighborhood U with o(U) D 'V suck that ¢ induces a homeomorphism from U to ¢(U).
Then @ is a covering map.

We first prove the

Lemma (xo.1x.x). — Let ¢:X —> Y be a continuous map with Y connected and X
Hausdorff. Let X, and X, be open in X and suck that ¢ induces homeomorphisms from X, to Y,
i=1,2. Then X, =X, or X;nX,=0.

Let 5;: Y - X be the inverse of ¢ | X;. The set of y e Y with s5(y) = 5(»)
is closed. It is also open, being the image of X; N X, by ¢:X; 3 Y. It ishence the
whole of Y or empty; ie. X, =X, or X, nX,=6.

Proof of (10.11). — For VCY, let ¢y be the map induced by ¢ from ¢~ (V)
to V. We have to show that each y € Y has a neighborhood V such that

(7'(V), ov) = (VX D, pry)
with D discrete. Take V asin (10.11), open and connected. Replacing the U of (10.11)
by U n ¢ '(V), we find that each x € 97!V is contained in an open set U such that ¢

induces a homeomorphism from U to V. By (10.11.1) applied to ¢~ (V) -V, they
form a partition of ¢~'(V) and the claim follows.

Proposition (10.12). — Let ¢ : (X, 0) — (Y, p) be a continuous map of meiric spaces,
with Y — {p} locally connected. We write d for the metric on both X and Y. Assume that
there exists a neighborhood U of o such that for each neighborhood V of o, one has

a) there exists &> o such that for all x e U — V, the open ball B,(x) maps homeo-
morphically onto an open set of Y;
b) for all €> o there is > o such that for eack x € U —V, ¢B(x) 3B, ¢(x).

Then, there exist open neighborhoods X' of 0 and Y’ of p such that @ : X' — @~ '(p) =Y — p
15 a covering map.
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Roughly speaking, a) #) mean that on U — {0}, ¢ is a local homeomorphism
with some uniformity. The uniformity is allowed to get worse for x —o. It is not
assumed that o is isolated in ¢~ (p). Under additional assumptions, this will be a conse-
quence; see (10.13).

Proof. — Choose U as in (10.12). Seclect a necighborhood V of 0 and (1) > o
such that B,,,(V):={xeX |3veVd(x,v) <e(1)} is contained in U. If B,(0)C U,
one can take £(1) =¢ and V = B,(0). Bya) b) there is € and 5 such that

(*) for all x e U — V, ¢ induces a homeomorphism of B,(x) with an open set of Y
containing By, (9(x)).

Set Y' = B,(p) and take X' to be the set of all x with ¢(x) € Y’ such that either
(i) xeV; or
(ii) there is x, e U — V with d(x, x,) <e, and ¢(x,) €Y',

In case (ii), xe€B,(x) Nne Y (Y)CX’' and ¢ induces a homeomorphism of
B.(x;) N~} (Y’) with Y'. This results from (*).

Fix y e Y' — p and let W be a neighborhood of y in Y’ — {p}, disjoint from a
neighborhood of p. Then ¢~' W is disjoint from a neighborhood of 0 and by a) 5)
for e(2) small enough there is n(2) such that

(%) for all x e U with o(x) e W, ¢ induces a homeomorphism from B,y (x) to an
open subset of Y containing B, (¢(x)).

We may and shall assume that e(2) <e¢(1) and that B,,(y)C W. Propo-
sition (10.12) now follows from (10.11) applied to X' — ¢ ' (p) > Y —{p} and
from the

Lemma (10.12.1). — Each x in X' 0o ' (B,y () has an open neighborhood B’
in X' whick maps homeomorphically onto an open subset of Y containing B, ( »).

As x e X', one of the conditions (i) (ii) holds. In the first case (x € V), one
has B,,(x)CU, and we claim that B, (x) N ' (Y)C X' For if =z eBy(x)
and ¢(x') €Y', then either x" € X, by virtue of (i) or x"e U —V and x"eX’ by
virtue of (i) with x; = x’. In the first case, B’ = B,,(x) N ¢~ '(Y’) and one uses (¥).
In the second case, take B’ = B,(x;) N ¢~ '(Y’) and use (¥*).

The assumptions of (10.12) remain valid if we replace X and Y by open neighbor-
hoods of 0 and p. The X’ and Y’ of (10.12) can hence be chosen arbitrarily small.
From this, we will deduce the

Corollary (x0.12.2). — The point o has a fundamental system of open neighborhoods X'
such that for Y' a suitable open neighborhood of p, X' — @~ '(p) is open andclosedin ¢~ (Y' —{p})
and is a covering of 'Y’ —{p}.
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First take X;, Y, as in (10.12), and W a neighborhood of o such that W~ C X.
If X', Y are as in (10.12), with X'CW, Y'CY; and if X]:=X;Nn¢ 'Y’, then
both X{— ¢ '(p) and X' — o }p)(C X;— ¢ (p)) are coverings of Y — {p};
hence X’ — ¢~ !(p) isopen and closed in X; — ¢7(p). As (X' — o7 '(p))"C W~ C X,
X' — @7 (p) is also open and closed in ¢ (Y’ — {p}).

Corollary (x0.x2.3). — If 0 is not isolated in X, and if p has a fundamental system of
neighborhoods V such that NV — p is connected (in particular, non empty), then ¢ is open at o.

If 0 is not isolated, X’ cannot be contained in ¢~'(p); for applying (10.12) a) to x
in X’ near o would contradict o(X')C{p}. Itfollowsthat o(X' — ¢ '(p)) =Y — {p}
and hence that ¢(X’) = Y’. Openness follows.

Proposition (10.x3). — In addition to the hypothesis of (10.12), assume that Y — {p}
is locally simply connected and that

¢) p has a fundamental system of open neighborkoods ¥~, such that each V — {p} (Vin ¥")
is connected and that for V C V', both in ¥, m(V —{p}) 3 = (V' —{p}).

d) o has a fundamental system of open neighborhoods N with N — {0} connected (non-
empLy).

Then, one can find X' and Y' as in (10.12) suck that o' : X' —~Y' has the following
additional properties: X' isin ¥, ¢' 7' (p) = {0}, X' — {0} is connected, and X' is the completion
of X" — {0} above Y'.

Proof. of (10.13). — Shrinking X and Y, we may and do assume that Y is in ¥/,
that ¢ : X — ¢7'(p) - Y — {p} is a covering map, and that ¢ is a local homcomorphism
ateach point x 3 0. Let N be an open neighborhood of o suchthat N — {0} isconnected.

Lemma (10.13.1). — N — @ '(p) is connected.

Let ACN — ¢ '(p) be open and closed. Each xeo¢ !(p) — {0} has a
neighborhood WCN with W —{x}35 (W) —{p} connected. For such a W,
W — {x} = W — o7 !(p) lies either in A or in its complement. It follows that the closure
of Ain N — {0} is again open and closed and, by hypothesis, is empty or the whole of
N —{o}. Ifitis empty (resp. the whole of N —{0}), A is empty (resp. the whole
of N — p7'(s).

Since Y — {p} is locally connected, so is the covering space X — ¢7(p). Each
connected component of X — ¢~(p) is open and closed in X — ¢~ '(p) and is a
covering of Y — {p}. Let N; be the component of N containing N — ¢~ 1(p).

Lemma (10.13.2). — N; n o7 !(p) = {o}.

Any x % o in ¢~ !(p) has an open ncighborhood W’ such that ¢ induces a homeo-
morpaism of W’ with an open neighborhood of p in Y. Take V in ¥ with VC o(W’)
and define W:= W' n ¢ (V). One has ¢: W5V,
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The assumption =, (V —{p}) 5 =, (Y —{p}) implies that for any covering map
$:Z >Y —{p}, one has (' (V—{p})) > ny(Z). In particular, as N, is con-
nected, sois N; N9~ (V). Both N; n¢ (V) and W — {x} are connected coverings
of V —{p}, contained in the covering ¢~ '(V —{p}). They arc not equal: x is the
only point of ¢ '(p) in W~, while ¢ e N;. They are hence disjoint and x ¢ N,.
Lemma (10.19.2) is proved.

We take Y' =Y and X' = Nj. It follows from (10.13.2) that X’ is open and
closed in X and that ¢~ !(p) ={0}. By construction, X' — ¢~ !(p) = X' — {0} is
connected. For each V in ¥, m,(V —{p}) > n,(Y' —{p}) implies as above that
e ' (V —{p}) is connected. It then follows from (10.12.2) that the ¢~ (V)N X’
(Ve?) form a fundamental system of neighborhoods of 0 in X’. Consequently X’
is the completion of X' — {0} over Y'.

Corollary (10.13.3). — If, in addition to the assumptions of (10.12) and (10.13). the
V —{p} for V in ¥ are simply connected, then ¢ is a local homeomorphism at o.

Indeed, with the notation of (10.13), Y’ —{p} is simply connected; hence
0: X' —{0} >Y —{p} is a homeomorphism as well as ¢ : X' > Y".

(r0.14) We shall require a simpler variant of (10.12) in our extension of the
map @, to cusp points. In that situation, we shall be dealing with a continuous map
o:(X,0) > (Y, p). Metrics are givenonlyon X — {0} and Y — {p}, and we assume

a) The ¢~!(V), for V a neighborhood of p in Y, form a fundamental system of
neighborhoods of o. In particular, ¢~'(p) is {o}.

b) There is a neighborhood U of o such that for any neighborhood VC U, the
conditions a), &) of (10.12) are satisfied.

Fix a neighborhood V, of p such that ¢~!(V,)C U. For any ncighborhood V,
of p and xeV; — V,, the map o¢,:9 Y(V, —V,) -V, —V, induces a homeo-
morphism of B,(x) with an open set containing B,(¢,(x)) for suitable € and 7. The
map ¢, is hence a covering map.  Asthisholdsforany V,, ¢: ¢ Y(V,— {p}) > V, —{p}
is also a covering map.

If in addition

¢) p has a fundamental system of neighborhoods V such that V — {p} is connected
and simply connected,

d) o has a fundamental system of neighborhoods N such that N — {o} is connected,

then an easy argument shows that ¢ is a local homeomorphism at o.

(ro.x5) Actually, we require (10.13.3) for the more general case where o and p
are replaced by strata. The analogue of (10.12) is:

Proposition (x0.15.1). — Let ¢ : (X, X;,0) = (Y, Yy, p) be a continuous map of metric
spaces, with Y — Y, locally connected. Assume that there exists a neighborhood U of o such that
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Jor each neighborhood V of X,, the conditions a) b) of (10.12) hold. Assume further that X,
is locally compact and that the map o¢,: X, - Y, induced by ¢ is a local komeomorphism at o.
Then there are open neighborhoods X' of 0 and X' of p suck that ¢ : X' — o7 }(Y,) =Y — Y,

is a covering map.

Proof. — Fix U as above, open and small enough so that for some open sct R
disjoint from U, K:= X, — R is compact and so that ¢ is injective on K. Notc that
if we take R =X — U™, then K=X,nU".

The subset (K — U) of Y,CY iscompact and does not contain p. Let W be
an open neighborhood of ¢(K — U) whose closure does not contain p. Then, ¢~' W
is an open neighborhood of K — U, and ¢ }(W~) does not contain o.

Select a neighborhood V of X, and (1) > o such that

By((VNU) — o7 '(W7))CU;

this can be done as follows. Since K -- ¢7' W is compact and in U, we choose (1) > o
so that By, (K — ¢ 'W)CU. One takes V=3B, (K—¢ 'W)ue 'WUR.
Then (VNU) — ¢ 'WCB,,;(K— 9 'W) and B,;,(VNU) — ¢ {(W7))CU by

choice of &(1)
U
R

@7'W

By a), b), there are € and v such that

(*) for all x e U — V, ¢ induces a homeomorphism of B,(x) with an open set of Y
containing By, (@(x)).

We may and do choose y small enough so that B,(p) is disjoint from W~. Set
Y’ = B,(p) and take X’ to be the set of all x with ¢(x) € Y’ (hence x¢ o }(W))
such that cither x e U NV, or thereis x, e U — V with d(x, x,) <e and o(x,) €Y',

Any yeY —Y,; has a neighborhood W, disjoint from a neighborhood of Y,;
hence, as in (10.12), for ¢(2) small enough there is n(2) such that

(¥*) for all x e U with ¢(x) e W,, ¢ induces a homeomorphism from B,,(x) to an
open set of Y containing B, (¢(x)).

One can assume that €(2) < ¢(1) and B,,(») CW, and one completes the proof
just as in (10.12), using that ¢(x) e Y’ implies x ¢ 97! W™,

(r0.15.2) Asin (10.12.2), X’ can be taken as small as we please. If o is not an
interior point of X, and if p has a fundamental system of neighborhoods V with V — Y,
connected, ¢ is open at 0. The proofis as in (10.12.3).
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Proposition (r0.15.3). — Assume that Y — Y, is locally simply connected and that
¢) p has an open neighborhood Vo with Vo — Y, connected, and each p' €Y, close
enough to p has a_fundamental system of neighborhoods VC Vy with V — Y, connected and

oV —-Y,) = (Ve — Yy).

d) Each o € X, close enough to o has a fundamental system of neighborhoods N unth
N — X, connected.

Then one can find X' and Y' as in (10.15.1) suck that ¢’ : X' —Y' has the following
additional properties: ¢) holds with Vo =Y’ for all p' €Y, N V,y, X' — X, s connected,
Xi:= X, N X" is the inverse image of Y;:=Y, NY', o' induces a homeomorphism from X{
to Yy, and X' 1s the completion of X' — X[ above Y'.

Proof. — - Shrinking X and Y, we may and do assume that ¢) holds for Vo =Y
and for all p' eY; NV,, that ¢,: X, - Y, is a homeomorphism, that ) holds for
all o’ eX,, that ¢:X — ¢ }(Y,) =Y, is a covering map, and that ¢ is a local
homeomorphism at each point x ¢ X,. Let N be an open neighborhood of o with N -- X,
connected. Asin (10.13.1), one checks that N — ¢~ 'Y, is connected. Let N, be the
connected component of X—¢~ 'Y, containing N—¢~'Y,. Itisa covering of Y—Y,.

If we shrink Y again without changing the =,(Y — Y,), and replace X, N, N;
by their traces on the pull-back of the new Y, we get N — X, C N with N, connected
and N DJX,.

Asin (10.13.2), one sees that Ny ne™ 'Y, = X,. Onetakes Y’ ==Y, X' =Ny
and ¢':X’'->Y' induced by ¢. The set X' is open and closed in the (shrunken) X
and ¢ ~YY,;) = X. All the listed properties of ¢’ are clear from the construc-
tion except for X’ being the completion of X' — X| over Y. For peYj,
p = ¢'(0"), and V an open necighborhood of p' with =(V — Y}) 5 (Y —Y;),
one has (e "HV — Y))) 3 my(X' — Xj), ie. ¢ YV —Y]) is connected. The
@' ~}V) for such V form a fundamental system of neighborhoods of o’ and the assertion
about completion follows.

In particular,

Corollary (10.15.4). — In addition to the hypothesis of (10.15.1) assume that Y — Y,
ts locally simply connected and that

¢') Each p' €Y, close to p has a fundamental system of neighborhood V with V — Y,
connected and simply connected.

d) Each o' € X, close to o has a fundamental system of neighborhood V with V — X,
connected.

Then ¢ ts a local homeomorphism at o.

(x0.16) We will apply (10.15.4) itcratively to some stratified spaces. In the
next proposition, ¢ stratified space ”’ means a Haussdorf topological space U, provided
with a partition 8 into locally closed subsets, the strata, where
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a) each stratum is a manifold; b) the closure of any stratum S is the union of
strata; (U, §) is conical in the following sense and locally constant along each stratum:
each point x of any stratum S has a neighborhood V isomorphic (with the induced
partition) to the product of V n'S with the cone over (Z, $(Z)), where X is a topo-
logical space Z, provided with a partition 8(Z). For simplicity, we assume in addition
the existence of a metric d for which d(x, ) is the greatest lower bound of lengths of
paths from x to y. The case we will need is U = Q,, S = the partition of Q
by the Q, for T varying over the stable partitions.

Proposition (10.16.1). — Consider a diagram

ﬁocﬁﬁl_)ﬁi)‘y

ol
U, > U, <> U

where

a) U is locally compact stratified space; U, is a connected open and dense stratum, and U, — U,
is a union of strata; each point has a fundamental system of neighborhoods whose traces on U,
are connected.

b) ﬁo is a covering space of U, and ﬁl (resp. 0) is the completion of fjo over U, (resp. U).

¢) The covering Uy of U, is Galois, with group T.

d) Y is a manifold, provided with a metric and an action of U' by isometries. The map ¢ 1s
equivariant.

e) o | U, is a local homeomorphism.

f) For any stratum S, S:= e~ Y(S) s a covering space of S because U, is a stratum. We
assume that for S CU — U, eack point of S has a neighborhood W in' S such that ¢ | W
is a tame embedding, with o(W) a subvariety of codimension > 3 in Y.

Then, ¢ is a local homeomorphism and the (local) decomposition groups of U/U are
Sfinite, i.e. o ts locally finite to one.

Proof. —— Let d be a I'-invariant metric on U; for instance take d(x,y) = the
greatest lower bound of the lengths, computed in U, of paths in U from x to ».

Let S be an open stratum of U — U,. We first prove that ¢ is a local homeo-
morphism at any point o € p~*(S). For this, replacing U by a suitable open neigh-
borhood V of p(0), U by the connected component of p~!(V) containing o and T' by
the stabilizer of 0, we may and shall assume that U — U, €8, that p induces an iso-
morphism S ->S and that ¢ embeds S in Y. Replacing Y by a D-stable open
neighborhood of ¢(0), and U by its inverse image, one may further assume that
Y,:= cp(g) is a tame closed submanifold of Y. Its codimension is > 3. We will
apply (10.15.4) with X = U, X, = S and o, Y, Y,, e as above. Local connectedness
and simple connectedness of Y — Y; results from Y being a manifold. Condition ¢’)
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of (10.15.4) results from Y, being a tame submanifold of codimension > 3. Condition 4)
of (10.15.4) results from assumptiona). Bye) ¢ | (X — X,) is a local homeomorphism,
and it remains to check the uniformity conditions of (10.12). As neighborhood of o,
we choose the pull back p~!(K) of a compact neighborhood K of p(0) e U. By definition
of the topology of U, any neighborhood of X, = SXS contains p~(V), for V an
open neighborhood of S. The required uniformities will follow from the compactness
of K — V. The function from X — X, to R": x> the greatest lower bound of
the ¢ such that o is an embedding on B,(x), is > o, lower semi-continuous, and F-invariant;
hence it is of the form rp with r continuous. On K — V, 7 stays away from o, and
this gives (10.12 a)). If € is such that for any x e p7 (K — V), ¢ | By (x) is an embed-
ding, the function from p~'(K — V) to R :x the greatcst lower bound of the 7
such that ¢(B,(x)) D B,(¢(x)) is > o, lower semi-continuous and P-invariant, hence of
the form rp and staying away from o. This gives (10.125)).

We now prove that ¢ : U — Y is a local homeomorphism. We have just shown
that ¢ is a local homeomorphism on p~'(Uj), for U; the union of U, and of the open
strata of U -— U,;. The assumptions of the Proposition hence hold with U, (resp. U,
replaced by U] (resp. o~ ' U}), and one concludes it proof by induction on dim(U — U,).

It remains to show that for any =x ¢ U, the stabilizer ACT of x is finite, Fix
a neighborhood V of x such that ¢ | V is an open embedding, fix a A-stable compact
neighborhood K of ¢(x) in ¢(V), and define V, =V ne 'K. It is a A-invariant
compact neighborhood of x. For y e V; N U,, [yisclosed and discrete. Therefore Ay,
which is in Ty n'V,, is discrete and compact, and hence finite. Thus A is finite.

We will use (10.16.1) to give an alternate proof of lemma (10.7), by passing the
purity of the branch locus theorcm (which was derived in the special case Q ,, = Q).

Lemma (10.17). — If condition (INT) is satisfied, the map %“:Q“ — Bt(a) 15

a local homeomorphism.

Proof. — We apply (10.16.1) with U = Q,, stratified by the Q for T varying
over the stable partmons Uo = Q , U, = the union of Q and of the (complex) codi-
mension one strata, U, = = Q; hence U= Q“ and ¢ =1i,. Conditions a) to d)
are clear, ¢) is (g.12) and f) follows from (6.9) and (3. 9)

(r0.x8). — As shown in (8.7), the map ), extends to a continuous map from Q_m
to B*:= B*(«),, where B* has the topology (5-4). Fix JeQ, and o€ Q.
above J. Define p:=,(0).

Let V be an open connected nexghborhood of J, and ¥ be the connected component
contammg o of its inverse image in Q,gt For V small enough, onc has: o is the only
point of ¥ above J; the stabilizer A C T of o acts on ¥, and V = VJA; if? is a distance
to p function (5.3) on B*, {@, descends to a continuous function f on V, vanishing only
at J. As V is locally compact, it follows, for V small enough, that the open sets
{v|f(v) <¢} form a fundamental system of neighborhood of J. As a consequence,
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the % '(A), for A a neighborhood of p, form a fundamental system of neighborhood of o.
We now apply (10.14) to prove

Lemma (x0.x8.x). — If condition (INT) is satisfed, the map %“:Qm - B is
a local homeomorphism.
Proof. — It remains to prove it at a point o as above. We apply (10.14) to

w,: (V,0) — (BY, p). Condition a) has becn proved. Condition ¢) and d) are clear.
The map is a local homeomorphism outside of 0. The required uniformity (10.14 5))
follows as before from the local compactness of V and A-equivariance.

Theorem (10.18.2). — Assume condition (INT). Then the map w,:Q,, — B*

restricts to a homeomorphism of Q“ onto BY and maps Qm homeomorphically onto an open
subset of BT in the (5.4) topology.

Proof. — By Proposition (10.18.1), @, is an etale map of Qm into B*. Let ¢
denote the restriction of w, to Q... [Itsuffices to prove that ¢ is an covering map of Q,t
onto Bt.

For any x ¢ Q", set

f(x) = sup{r | ¢ maps a neighborhood of x homeomorphically onto B,(¢(x))}.
Then as in the proof of Lemma (10.16.1), f is continuous, f(x)> o for x€Q ,, and
Slyx) = f(x) for all yem(Q,o0); that is, f descends to a positive-valued continuous
function on Q ,.

Since , is etale at each point of Qm and Q ,,,, consists only of finitely many
points, one can deduce from the (5.4) topology of B* the existence of an open neighbor-
hood W of Q .., and an »,> o such that f(x) > », for all xep™'(W). By § 4,
Q ., is compact. From the compactness of Q ,, — W onc deduces that f has a non-
zero lower bound on Q ,, — p~Y(W). Consequently, f has a non-zero lower bound 7
on Q,,. From this it follows that B,)(q)((j_,t)) = ¢(Q,), and therefore, (3 ,,) = B*.
By (10.11), ¢ is a covering map. Inasmuch as B* is simply connected, ¢ is a homeo-
morphism.

From the fact that each point y € Q,,, has a base of neighborhoods {V} with
V — Y connected, and the fact that @, is a homeomorphism on Q“, it follows that ),
is injective on Q"t and hence a homeomorphism onto its image, in the topology of (5.4).

(x0.19) Let S be a finite set with at least g elements, N = card S, p = (1,),¢s
with 0<p,<1 and Zy,=2. Set «, =expanq/-1p, for each seS, P the
projective line over G, G = Aut P, M the subset of injective elements in P8, Q = M/G,
0€Q, and 0:7,(Q,0) > Aut B"(a), = PU(1,N — 2) the homomorphism of =,(Q,, 0)
into the isometry group of the ball B*(«),, defined in (3.10.2). Set I = 6(n,(Q,, 0)),
Bt = B*(a),.
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Theorem (10.19). — If . satisfies condition (INT), then T is a discrete subgroup of Aut B*
and discontinuous on B*.

Proof. — By Theorem (10.17.1), the action of I" on B* is equivalent to the action
of T'on @,,. The latter action is discontinuous on Q since T" is the covering group of
the covering map Q — Q. It follows at once that I" is discontinuous on a dense open
subset of B*. Since I' acts on B* via isometries, it follows that I is discrete in Aut B*,
the isometry group of B*. Since Aut B operates transitively on B* with a compact
isotropy group, I' operates discontinously on B*.

Corollary (10.19.1). — For any y € Q ,,, the stabilizer T, of yin T is a finite group.

Proof. -— Set p =®%,(y). Then L ,~T,=T n(AutB*),. Since I is discretc
in Aut B*, and (Aut B*), is compact, T, is finite.

Corollary (10.19.2). — Q is the normal covering of Q universal with respect to the pro-
perty [R]: for each stable partition T of S with card T = card S — 1, if Ay is defined as
in (9.9), the ramification index along Q o divides ky.

Progf. —- Let Q* denote the universal covering with the property above. Then
the map Q' — Q extends to a covering map of Ql. By Theorem (10.18.2), Ql 1s
homeomorphic to the complement in the ball B* of a closed subset of complex codi-
mension 2 and is simply connected. Consequently, Qf = Q

Corollary (10.19.3). — Above a suitably small neighborhood U of a point x € Q .,
each connected component of Qﬁ e~ U is the universal covering of Q N U with respect to
the ramification property [R].

The proof is the same as the preceding one, with the ball replaced by the trace
of a neighborhood of a point in B* (in the topology of (5.4)).

Corollary (x0.19.4). — The stabilizer in T of a point x in the ball is generated by
C-reflections.

Progf. -— Choose U asin Corollary (10.19.3). Then U n Q, issimply connected.
Hence =w,(Q nU) is generated by loops around the ramification locus. These gene-
rators yield C-reflections by (9.2), generating I, if x € B*.

11, Finite measure

In this section, the notation and assumptions (4.0) as well as the assumption
N > 4 are continued. We assume moreover that the p’ s are rational.
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(xx.x) Let JeQ,,, —Q, be a semi-stable point of type (S(1), S(2)) where

e%my., =1. Let aeS(1) and b eS§(2). Let W be the neighborhood of J in Q ,,,

lying below the set of all y € P® such that y(a) = 0, y(b) = © and such that
sup{|x(s)|5 5 € S(1)} < inf{|y(s)[; s € S(2)}.

Let p: Qm -+ Q.. and let pep™!(]). By (8.2.4), m(Q, o) operates on Qm, and
m,(Q, 0), = D; = image of m(W N Q) in m,(Q, 0);

here, =,(Q,0), denotes the stabilizer of p and D; the decomposition group of J.
By (4.5), W —{J} is a simply connected manifold if card S > 5; hence =,(W n Q)
is generated by circuits around the codimension 1 subspaces Q . for all stable par-
titions T finer than {S(1), S(2)} with card T =cardS — 1 if N 2 5. By (g.2) the
monodromy of such generators are complex reflections which have finite order if y, is
rational for all seS. Thus

(xx.x.x) If cardS > 5, the quotient =,(Q , 0),/Ker 6 is gencrated by elements
of finite order; here 6 denotes the monodromy action (3.10.2).

(xx.2) Assume that condition (INT) is satisfied. Set V = HYP,, L)), let PU(V)
denote the projective unitary group on V with respect to the hermitian form of (3.10.2).
Let B* = B(a);, i.c. the set of all v € V with (v,2) > 0 modulo C*. Let %,:Q,,, -~ B*
be the map of Proposition (8.7). Set

t=w,(p), T =06m(Q,0)).

By Theorem (10.8.1), %, is a homeomorphism onto an open subset of Bf. Consequently
8(r(Q, 0)p) = I

the stabilizer of £/ in I By (11.1.1) and (10.19.3), we get

(rx.2.x) T, is generated by C-reflections of finite order if dim B* > 1 and by
a unipotent element if dim B* =1 (cf. (12.3.2)).

(xx.3) Let v e?, let PU(V), (resp. PU(V),) denote the stabilizer in PU(V) of ¢
(resp. d, (5.3)), and let N denote the unipotent radical of PU(V),. As pointed out in
the proof of Proposition (5.5),

PU(V),/N = U(V")

which is compact, and PU(V),/N =R x U(V”). Hence PU(V),/N contains all

compact subgroups of PU(V),/N. Therefore, as is well-known, PU(V), contains all

compact subgroups of PU(V), (because PU(V), contains a maximal reductive subgroup

and all maximal reductive subgroups of PU(V), are conjugate by an clement of N).
From (11.2.1), one infers

(rx.3.1) ', CPU(V),.
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Remark. — A more direct proof of (11.3.1) results from (7.3)—more precisely from
the fact that on W, we have a horizontal family of functions d. It follows at once that I,
preserves a ‘“distance to ¢”’ function (5.3).

Theorem (xx.4). — Let S be a finite set, 0 < p,< 1, a, = exp 2n4/—1p,, Zp, = 2
(all se8). Let 0:7,(Q,0) ->PU(V) be the monodromy action defined in (3.10.2).
Assume

(INT) For all s+t in S suck that p, + u, <1, (1 —u, —w)”" is an integer.
Then T, the image of 0, is a lattice in PU(V).

Proof. — By Theorem (10.19), I' is discrete in PU(V), and by Theorem (10.18.2)
F\mu(stt) = Q 4t

where wu(Q,,t) is an open subset of B* with respect to the topology of (5.4). Hence
F\L~vu((~2_m) is the union of a compact quotient of a subset of B* and a finite set of
neighborhoods W (in the topology of (5.4)) of points ¢; € dB*, where £; ew,(p™']),
p: Qm - Q ., and J varies over Q ... By § 4, Q,, is compact. Any compact
subset of B has finite measure. By (11.3.1) and Proposition (5.5}, the image in I'\B*
of W; —¢; has finitc measure. It follows that I'\B* has finite measure. Thus I' is
a lattice in PU(V).

Lemma (1x.5). The subgroup T, is Zariski-dense in PU(V).

The proof will be by induction on card S. By (3.10.2), we can lift T, C PU(V)
to a group I'; CU(V) which is generated by pseudo-reflections (cf. (9.2), (12.3.2));
recall the definition: y is a pseudo-reflection if and only if ¥ — 1 has rank 1. Hence
I, is irreducible on the lincar span L of the one dimensional subspaces of V corre-
sponding to its pseudo-reflections.

It is easy to verify that L = V. Thus I'; stabilizes no proper vector subspace of V.

We start the induction at N = 4. Here I', operates on the complex 1-ball as a
triangle group, rotating through twice thc angle at cach vertex of a geodesic triangle.

Since 0<p,<1 and X p, =2, the sum of the angles of the geodesic triangle is
sc8

less than = and the orbit of each point in B* under T, is infinite. Let ', T, denote
the Zariski closure of I',, T, in U(V) and PU(V) respectively. The group I, can
have no connected normal solvable subgroup non-trivial modulo the center of U(V),
otherwise, some I, orbits in B* would be finite. Consulting the short well known
list of closed complex analytic subgroups in PU(1, 1) (= PGL(2, R), one sces that
T, = PU(V) if cardS = 4. Suppose now card S > 4.

By (6.21) and two induction hypothesis, T, D PU(V) where T is a stable par-
tition of S with card T =card S — 1 and V; is the corresponding subspace of V.
Since T, is irreducible on V, we infer T, = PU(V).
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12. Arithmeticity and Integral Monodromy

(12.1) Assume that for each s €S, p, is a rational number and let 4 denote the
least common denominator of {y,|s€S}. Set F = Q(4/1), O the ring of integers
in F, and V =H(P,,L,) where P,=P —0o(S) as in (3.1). Then the vector
space V can be defined over the ring @. To see this, let L(F) (resp. L(®)) denote a
local subsystem of L on P, (suitably chosen using a base point on P,) with fiber the sub-
field F (resp. subring @) of C. The pairing of Lk with its complex conjugate induces an
O-valued pairing on L{0). Then one can define cohomology combinatorially as in (2.2)
with coefficients in L(®); one can also define the skew-hermitian cup product

%0 : H(P,, L(0),) ® H;~*(P,, L(0),) > Hi(P,, 0) = O

combinatorially; set
V(0) = Hi(P,, L(0),), V(F) = Hi(P,, L(F),).

Define
(tz.1.1) ol 0) = jols 3),
where j =6 — b forsome b € ® — @® N R. This ¢, is a hermitian form on V defined
over 0 and may be identified with the form defined in (2.18), up to a real scalar factor.

We lift the map 0:x,(Q,0) - PU(V) of (3.10.2) via a local system L on M(c)
to 0':m (M(c),0) > U(V) by (3.14). The image of 0" is in U(V) (0). Set
(12.1.2) F,=Im6, TI,=Im¢
where « = {exp 2nip, |s €S}, Then
(r2.1.3) ', stabilizes V(0).

(12.2) We collect here some remarks and definitions pertaining to arithmeticity of
lattices.

Let I’ be a Zariski-dense subgroup of G(), for G an adjoint connected semi-simple
algebraic group G over %, a field of characteristic 0. Set E = Q[Tr Ad I'], the field
spanned over Q by {TrAdy|yeT}.

Proposition (12.2.1)

(1) The group G has a faithful matrix representation o such that o(T') C GL,(E) (and
hence G has E as a field of definition).
(i1) E remains unchanged when T is replaced by a commensurable subgroup of G.

Proof. — Let T denote the function g+»Tr Adg on G, and let W denote the C-linear
span of the left G-translates of T (we define (x.f) () = f(yx) for anyfunction f: G - C,
x and y in G). Inasmuch as T is a sum of matrix coefficients, W is finite dimensional.
Since I' is Zariski dense in G, there is a finite set of elements x,, ..., x, in T such that
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B={x.T,...,x,. T} is a base of W. Let p,:G —> Aut W be the representation
given by xbrx.f for xe G, feW. It is well known that the representation p, is
faithful ([10], Theorem (2.1), p. 123). Let p(x) denote the matrix of p (%) with respect
to the base B. Then p(x) has all its entries in the field E for all xeT.

To prove (ii) it clearly suffices to consider the case that I’y is a subgroup of I' of

finite index. Replacing T’y by ﬂl x[x™!, we can suppose moreover that I'y is normal
zel’

in I, Then Ty is also Zariski-dense in G. Set E; = Q[Tr Ad I'y] and select the basc
B={x.T,...,x.T} with xely, (¢=1,...,n). Let 6:E—-G be a mono-
morphism which is the identity on E,. To prove (ii), it suffices to prove that o leaves
each element of E fixed. For any yeI' and xe[l,, we have yxy~'eT,. Hence,
by (12.2.1),

p(x) "t =0y ") = °p(1) %(x) %(1)"

1

that is p(y) p(x) p(») ™" = (1) p(x) %p(»)™". Hence for all yeT,, o(5)7" o()
centralizes p(I"y) and therefore p(G) since I'yis Zariski-densc in G. The center of p(G)

is 1 and conscquently °(y) = p(y) for all y e G. Thercfore o fixes each element of E.

(x2.2.2) Take p as in (12.2.1). The Zariski closure of p(I') in GL (E} is an
algebraic group over E. Because taking Zariski closure commutes with field extensions
it is a form of G over E. This provides the group G with an E-structure, called the
natural E-structure of G. If o’ is another faithful matrix representation of G with
p’(T') C GL,,(E), it leads to the same E-structure. To check this, one compares p to p’
via p®@p’.

If F is a subfield of # and G; an F-structure on G for which I'C Gg(F), the field
of traces E is contained in F and, by the above construction applied to Gy over F, the
given F-structure on G is deduced from the natural E-structure.

(12.2.3) Let A be a semi-simple algebraic linear group defined over the field Q
of rational numbers, let V be a finite dimensional vector space defined over Q, and
p:A > GL(V) a faithful rational representation defined over Q. By a theorem of
Borel-Harish-Chandra [3], the subgroup T = p™!(GL(V,)) is a lattice in A(R) for any
lattice V in Vy; that is, I is a discrete subgroup of A(R) and A(R)/T has finite measure.

(x2.2.4) Let G be an adjoint connected semi-simple real Lie group. It is the
topological connected componcent G(R)? of G(R), for G an adjoint connected semi-simple
algebraic group over R. By definition, a subgroup I' of G is arithmetic in G if and only
if there exists an algebraic group A over Q , a compact group K and an analytic iso-
morphism 6 of A(R)® onto G X K such that 8(A(Z) N A(R)®) has its projection into G
commensurable to I'. The group A is necessarily reductive. It can be assumed
connected adjoint semi-simple; namely, replace A by A%/center (A%). The group A is
then a product of Q-simple groups A; (cf. [23], p. 46 (3.1.2)). If G is a simple non-
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compact Lie group, it follows from the definition that all A, but one, A,, are such that
A;(R) is compact. Replacing A by A,, one can then assume that A is Q-simple, i.e. of
the form (cf. [23], p. 46 (3.1.2))

A = Restry/q B
for B an absolutely simple group over a finite extension F of @ . One has F®R = IIF,
(product of the completions of F at the infinite places ») and A(R) = B(F®R) = IIB(F,).

The existence of § as in (12.2.4) amounts to saying that for all » but one, »,, B(F,) is
compact (hence if v + v, the place v is a real place) and that B(F,)® ~ G, the isomor-
phism carrying B(®) to a subgroup of G commensurable to I'. If G is an absolutely
simple Lie group, the place v, is a real place, F is totally real, and B is an F-form of G,
F being identified with a subfield of R via »,.

(12.2.5) Assume that G is absolutely simple non compact. In our application,
it is PU(1, N — 3). By the Borel density theorem, any arithmetic T in G is Zariski
dense. If A = Restry/q B is as above, with FCR, B an F-form of G, and I' a sub-
group commensurable to B(@,), then by (12.2.1), (12.2.2) FOE and the F-form B is
deduced from the natural E-structure of G defined by I For all the real places » of F
above the identity embedding of E, the G(F,) are isomorphic, hence non compact.
There can hence be only one such . Hence F = E. We conclude:

(12.2.6) Assume G is an adjoint connected absolutely simple non compact Lie
group. Then a subgroup I'C G is arithmetic if and only if

a) the field of traces E is totally real;

b) for each embedding o of E in R distinct from the identity embedding (°G) (R)
is a compact group (i.e. the real group G ®g , R deduced from the natural E-structure
of G is compact). G being as in (12.2.4);

¢) T' is commensurable with G(0).

(12.2.7) Let G be an adjoint connected absolutely simple non compact Lie group,
and let T be a lattice in G. Assume a totally real number field FCR, and a form G,
of G over F are given, such that a subgroup of finite index of T is contained in G(0).
Then the field E = Q[Tr AdTI'] is contained in F by (12.2.1).

Corollary (12.2.8). — A lattice T'C G is arithmetic in G if and only if, for each embed-
ding o of F in R, not inducing the identity embedding of E in R, the real group Gp®y , R is
compact (i.e. °G(R) is a compact group).

Proof. — Since ECF, a) of (12.2.6) is implied by the assumption that F is totally
real. By (12.2.2), the given F-structure of G is deduced from the natural E-structure
and T'c G(E). The condition in (12.2.8) amounts to b) of (12.2.6). Assume it
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holds. Then, G(@) is an arithmetic lattice in G(R). A subgroup of finite index in T
lies in G(E) n G(0;) and hence G(0) contains a subgroup I'" of finite index in T.
Both I and G(0g), being lattices in G(R), have finite covolume; hence the index of I
in G(0g) is finite. Condition ¢) of (12.2.6) follows.

The criterion (12.2.8) will be applied to test the arithmeticity of ', in PU(V, ).

(12.3) We shall need more explicit information about monodromy than given
in (9.2) in order to compute Q[TrI;], where I'; is as in (12.1.2). The result
needed is (12.5.1). Actually, by consulting the explicit lists in § 14, one can obtain the
required information in a case-by-case inspection except in three of the cases.

For the remainder of § 12, we assume o< p, <1 and p,€Q for all seS.

Let S =3S,uS, with cardS, =1, let T,, T, be trees as in (2.5) with the
verticesof T;in S; (i = 1, 2), and let B: T, uT, > P be an embedding with B|S = o,
the base point of M.

Without loss of generality, we can assume that T, is homeomorphic to the interval
o<x<1.

Fix an orientation on T, let sq, ..., sy._, denote the vertices of T, taken in order,
and let g; denote the oriented edge from s;tos;., (1 <7< N — 2). Let T denote the
cone over T, u T, with apex A and denote by B also an extension of § to an embedding
of T in P. Since T —({s,,...,sy} is simply connected, the pull-back B* L. may be
identified with the constant system C on it, and we can choose ¢(a;) € Ha;, * L) for
cach 1 so that

(12.3.1) La)Blar —1.B|S+ 1.5, 1SiSN—2

where 5, is the arc from A to 5; and & denotes homology. Let w; denote the element
in HYP,, i(@)) determined by #(4).B | g;; then as in (2.5) {w,, ..., wy_,} is a basis.
Let v, ; denote thc monodromy cffected on H{(P,, L) by moving o(s;) along a path
close to B(T,) disjoint from 8(T) UD, except at its initial point, where D, is a small

disc centered at o(s;), then making one positive turn around @ D,, and then retracing the
path to o(s)).

Lemma (12.3.2). — Set w) = y,,w, and w, = v,k =1,...,N— 2.
Then

and w, = azw, + ag(ag — 1) wy,
w, = wgag(ey — 1) Wy + (g a; — &3 + 1) Wy,
wy = ayog(1 — ay) wy + ag(1 — &) wy, + wy, f N—3>1,

wllczwk, k2> 3.
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Proof. — Let ¢ denote the unique element in the S,. Introduce the local system L(c)
of (3.15) on Py . Without loss of generality, we can assume that our base point
o e M(¢) i.e. o{c) = oo,

Set d = B(r). Without loss of generality we can choose the embedding « of T so
that siélg. |d — o(s)| > g diam o(S,) (here we are identifying P with P via a coordinate 2

as in (3.15)).

The effect of horizontal transport of {w,, ..., wy_,}under variation of embeddings
of S in P is given by an isotopy of P (cf. (3.6)). In particular, v; ; arises from an iso-
topy {#i;; 0 <t < 1} of P which twists o(s;) one positive turn around o(s,) along the
path described above; here x); = identity and =;;|0(S) = identity. The isotopy %;
can be performed so that the only points which move lie in a disc containing o(S;) of
diameter less than 2 diam o(S;). Since under the isotopy no point of o(S,). turns around d,
one sees by inspection of the definition of L(¢) that the restriction of the dual local
system L(c) to the subset {(d X 7;0(81)); 0 <t <1} of Py, has a trivializing non-
zero section ¢, 1 <i,§ <N — 1, Consequeatly, for each i, <N — 1, ¢&(d) returns
to its initial value after horizontal transport via #{;, o <t <1.

Set v, =¢.8(5 and o, =uni;(m), 1 <4 j,A<N—1. In view of (12.3.1),
w, ¥ — v, + v,,, when the section ¢ is taken to have the same value on d as the section
denoted ¢ in (12.3.1); we choose ¢ in this way. The argument above shows that the

initial segment of the L valued singular chain g, is unchanged by the map =,
1<4,,k<N—1.

\‘;’ (s3) :{S.,)

b)




The effect of the isotopy % corresponding to v, ; is pictured in diagrams a) and b).
Let ¢ ~ > denote “ homotopic in P,”. Then

vy ~ Uy + (1 — o) Wy — Xy oty Wy

Uy ~ Uy

, — - - e - -
Vg~ Ug — &g Wy — @y Gy Wy - &y Xp Xy Wy - Gy &y &g A3 Wy

V\' °

o~ o, for k2> 4.
Consequently
Wy~ — 0y + 0 ¥ agwy + xy(ag — 1) wy,
Wy~ — Uy + Oy~ — Uy + Uy + apxg(xy — 1) wy + (@ x5 — xg) W,
A dg xg(% — 1) wy + (1 — a3 + x; a35) Wy,
Wy~ — Uy + Uy~ — g+ Oy b agag(1T — y) wy + (a3 — 2y %5) Wy
A g ag(l — ;) wy + ag(1 — ;) w, + w;.

The second part of (12.3.2) follows at once. The proof for v, , is similar.

(12.4) For N = 4, calculations as above yield for matrices with respect to the

basis {w,, w,}
oy dy (1 — &) 1 o
Y1,2 = s Y23 = - __})
0 1 I —ay oy«

s = ( ag ag ag(oay — 1) )

ag(ag — 1) ayou3 — g + 1
and we easily verify that
(x2.4.1) Y1,2- Y3,3- Y13 = % %p %3.

This shows that our lift 6’ : x;(M(c), 0) > U(V) of 6:=,(Q,0) - PU(V) cannot be
factored through =, (M,0) - U(V) if p,+ 1/2, since the center of =;(M) is
m,(PGL(2)) = Z,.
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Lemma (x2.5). — As in (12.1), set F = Q(y/7) and T, =Im®'. Then

(r2.5.1) Q[TrT,]=F
(12.5.2) Q[TrAdI',] =FnR if cardS> 4.

Proof of (12.5.1). — By (12.1.2), Q[TrI,JCF. By (9.2) Q[TrTI.] con-
tains a, «,, for each distinct pair s,s" € S. It follows that Q(Tr I';) O Q(4/1) where n
is the least common denominator of {u, + w, |s,s"€S,s =5s"}. For any 3 distinct
elements s,, s,, 53 of S, we have

f"t, T My, T (y‘:, +' (J",) - (“‘c, + “'l.)'

Hence for any distinct s, s’ in S, Q[Tr I';] contains «, o',

We choose a basis {w,, ..., wy_,} in HYP,, L) asin (12.3). Then Y1,3- Y1, has
as matrix with respect to this basis the upper 2 X 2 diagonal of

g agag(a; — 1) ayag(l — ay) @& dg(l —a;) ©
aglg — 1) &gy —ag+ 1 ag(1 — ay) 0 I ol
o] 0 1 (o] 0 1

The diagonal terms of the product are
Ry & &yy --- — (@ — E)(@g— 1) +Xgoty — &g + 1,1, ...,
therefore, for any sy, s,, 53 €S, we get
Try,svie =% %3+ a + N—4 =a(a,a3 + 1) mod Q.
Hence a, e Q[Tr I',], provided that a, a3+ — 1 for some s,,53€S; — {53}, This
proviso fails only if p, = 1/4 for all s in S;; in this case, replace S, by a partition T,

with card T, = card S, (cf. (6.2.1)), and in the corresponding subgroup of TI';, the
proviso holds. It follows that o, e Q[TrI';] for all seS. This proves (12.5.1).

Proof of (12.5.2). — Set E = Q[Tr AdI';] and & = C[Int I';]: the C-linear
span of the automorphisms Inty:m —ymy™' with yeI',, where m e Homg(V, V)
and V is as in (12.1). Let o e Gal(F/E). Inasmuch as TrIntg =14 TrAdg
for any g e GL(V), it follows by definition of E that for any yeT,

(12.5.3) Tr(Int %) = °Tr(Int y) = Tr(Inty).
It follows from this that
(12.5.4) Inty — °Inty extends to a C-linear map ¢ of &/.
For Z¢,y =0 with ¢, €C, yelIntT, implies that for any {d,} with d, €C,
Tr(Ee, °) (£d, °) = Tr Zc,d, °(vy)
= Tre, d, (vY")
= (Tr Zc,y)(£d,y) =o.
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The group Int ['; is Zariski-dense in Int GL(V). Consequently &/ coincides with
the C-linear spanof Int GL(V); thus &/ is an associative algebra acting irreducibly on the
subspace & of trace o elements in Homy{V, V) and stabilizing the line G.1. Since a
field automorphism preserves Zariski-density, the G-lincar span of °Int I', is also .
Therefore

Tr((Zc,°y).m) = o for all me .

Since Tr is non-degenerate on & it follows that Zc °y = o. This implies (12.5.4).

Clearly ¢ preserves products and is an algebra isomorphism. Since
& ~ Homy(&, &), & is a simple associative algebra. The map ¢ is an algebra iso-
morphism and therefore ¢ maps Int GL(V) isomorphically onto the Zariski closure
of Int°I';, which is also Int GL(V) That is, ¢ stabilizes Int GL(V). Consequently,
there is an S € GL(V) such that for all g e GL(V) either

(i) p(Intg) = IntS~'gS, or
il Intg) = Int S~ 1418,
? g 4

For any geGL(V), Intgx~ g®' ! where ~ denotes equivalence of repre-
sentations, and for any g € U(V, {), the unitary group of some hermitian form ¢ in V,
g~ » g
Consequently, for any y € I'; and ¢ € Gal(F/E),
_ _ I =y®y
v ®F) = *(y®F) = pldnty) x{ L P
Inty =y®y.
It follows at once that

o [k(y)y in Case (i)
TSy 7 in Case (if)

for all yeTI; where A(y) e C. Composing ¢ with complex conjugation, one can
assume that we are in Case (i). Then there is an element S € GL(V) such that for
ail yel,

vy =S5""y.My) S.

From °(y;vs) = °v1-°v2 = S y1v2 My1) AMyz) S, we infer that A:T;—>GC is a
multiplicative homomorphism. For any y such that y — 1 has rank 1, °y has
the same property and therefore A(y) =1 if dim V> 2. Since T, is generated by
pseudo-reflections ((10.19.4), (11.2.1)), M) =1 and °Try=Try for all yeI},
i.e. ¢ =1. This proves (12.5.2).

We close this section with a description of the field E = Q [Tr Ad I',] in the case
N =4, with « satisfying o<y, <1 for all se€S, Zy, =2, and condition (INT).
In this case, setk, = (1 — gy, — )"}, 1 <i*+j< 3. Assume k;> o0 (cf. § 14.3).
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Proposition (12.5.5).

T k7 T T ™ 3

E = Q[coszz—m, coszz, coszg, cosk—12 cos;z—a cosk—3; .

Proof. — We have T' CPU(1,1). Thus AdT, = AdTI',C SO(2,1,R). Let
A = A(Ryq, kg3, k3;) denote the group generated by reflections in the sides of the geodesic
triangle in the real hyperbolic 2-space RA? whose vertices are fixed by the monodromy
transformations vy, Ye3, Y1 (cf. (12.3) and (12.4.1)), and lct A, denote the subgroup of
orientation preserving clements in A, Then Ad I',CA,, card(A/Ay) =2, and Ad T,
is of finite index in A.

Let <u, v)> denote the Killing form on the Lie algebra # of PGL,(C), and let
¢; be an clement in % with (¢, ¢> = 1 such that (in the projective model of RA2)

el contains a side of the above geodesic triangle (i = 1,2, 3), and <¢, 6> = — coskE
if 1+ 4. Let ¢ denote the element of the dual space of £ such that ¢(v) = (v, e,~>J
for all e Z (i = 1,2,3). Then the three generating reflections of A have the form
5;=1—26®¢ (i =1,2,3) and
r 4 k
S 5. .85 =11 (1 —2®¢)= X {(—2) Il ¢ ®¢,
T et iy k=0 a=1 a e

n<ig.. <jg
k

Trs, ...5; = 2 (—2) Il ¢
4 k=0

Y a=1 YaYan

s jk+1 =j1

where G = —COS/%’ 1Si¥j<s
1, =]

From this it is clear that Q [Tr A] is the ficld E’ on the right side of (12.5.5). Suppose
now o:E — C is a monomorphism fixing each element of E. By the argument used in
(12.2.1) (ii) for any y € A and x e AdI',, » !9 is in the centralizer of SO(2, 1, R).
Hence y7'% = +1 and % = + y. It follows that °det y = 4 dety. But y e O(2, 1)
has determinant + 1 and this value is fixed by 6. Therefore °%» =y and °Try = Try
i.e. o fixes each element of E. Consequently, E = E’.

(12.6) Assume card S > 4. Let {g,|s €S} bea family of numbers o< p, < 1
satisfying condition (INT). By Lemma (3.12), u, is a rational number for each s. By
Theorem (11.4), the group T, is a discrete subgroup of finite covolume in PU(V, ¢,)
where V = HY(P,,L)). Set E=Q[TrAdTl,], F=Q(y/1) asin (12.1).

Proposition (12.6.1). — T', is arithmetic in PU(V) if and only if for each o € Gal F
whose restriction on E is not the identity, °Lg is a definite Hermitian form on °V.

Proof. — Let G = PU(V, {,). Inasmuch as the complexification of G is the simple
group PGL(V), (12.6.1) is essentially a restatement of the arithmeticity criterion (12.2.3).
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Proposition (12.6.2). — Assume card S > 4. Then T, is arithmetic in PU(V) if and
only if for each o € Gal ¥ with o % identity or complex conjugation, °{, is a definite Hermitian
Jorm on °V,

Proof. — This follows at once from (12.6.1) and (12.5.2).

Proposition (12.6.3). — Assume card S = 4 and p. satisfies condition (INT). Set

8 =det({e,e>) =det]cpy 1y

127
€31 Cg3 I
where c;; = — cos ’;, 1 <1i,7<3. Then I', is non-arithmetic in PU(V) if and only if
9]
°3< o for some c e GalE with 64 1 on E,

Proof. — We have 8 =1 — & — ¢k — & — 26,5656, and thus 8 eE.
Moreover, °3> o implies that the matrix °Ce,, ¢;> is positive definite since all its prin-
cipal minors are positive. From this (12.6.3) follows.

Criterion (12.6.3) applies to the index 2 orientation preserving subgroup of a
group gencrated by reflections in the sides of a geodesic triangle in the real hyperbolic
2-space, a so-called ¢ triangle group ”, cf. § 14.3. One can deduce from (12.6.3) that
at most a finite number of triangle groups are arithmetic. A complete list of these
groups was given by K. Takeuchi in [21].

Proposition (12.7). — For any b € Q let (b denote the fractional partof bie. 0 < (b><1
and b — (byeZ. Let pw={p,|seS} satisfy condition (INT) of (3.11) and let d denote
the least common denominator of w. Then T, is an arithmetic lattice in PU(V) if and only if

(12.7.1) Sor each integer A relatively prime to d with 1 < A<d—1,
Z(Ap,> =1 or cardS — 1.

Proof. — Let A be an integer relatively prime to 4 and let € be a primitive root
of unity of F = Q(y/1). Then ¢,:¢c->¢* is an automorphism of F which is non-
trivial on F N R ifand only if A # + 1 (modd). The automorphism o, sends the
local system with monodromy o« to the local system {exp2ni (Ap,>|seS} By
Corollary (2.21), the hermitian form °Ay, has signature

(Z<Ap> — 1, 2 (1 — CAw,d) — 1).
The proposition now follows from (12.6.2) and (12.5.2).
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(12.8) Let T’ be a subgroup of GL(n, Z) and let G denote the Zariski closure
of I'in GL(n). Then G is an algebraic group defined over Q with the property

(12.8.1) Any Q:character y of the connected component G° of 1 in G is trivial.

(For %(I' n G°) is Zariski-dense in the connected subgroup %(G°(C) of C*, and it is
finite because it has bounded denominators; hence ¥(G®) = (1).)

By a well-known theorem of Borel-Harish Chandra, G(R)/G(R) n GL(n, Z) has
finite Haar volume [3]. Consequently I is an arithmetic subgroup in G(R) if and only

if I' is commensurable with G(R) n GL(n, Z) or, equivalently, I' is of finite covolume
in G(R).

(12.9) We consider now an algebraic family X defined over Q of curves of the
type described in (2.23). We describe an example.

n, . .
Let u, o, M be as above, let u, = j with 4 the least common denominator for

{w,|s€S}. Fix a,b,ceS. Then for each m e M, there is a unique isomorphism
P — P! mapping m(a), m(b), m(c) respectively to 0, 1, 0. Let u:P X M X P! be the
resulting map. Define

(x2.9.1) X ={(umePxPxM|v?= Il (u—m@s))"}.

s*¢

Let =,, 7y denote the projections of X onto the second and third factors respec-
tively. Set X, = n; !(m) and denote by =, the restriction of =, to X,, for any m e M.

More generally, let =#: X - M be a fiber bundle over M (i.c., a topological
product over small open scts of M) satisfying

(x2.9.2) For each meM, = (m) is an irreducible abelian cover of P, with
covering group G, ramified only at m(S) of orders dividing d.

Set X, = n~!(m) forany m e M. Then {HYX,,,Z)|m e M} is alocal system on M
corresponding to a homomorphism £ : =,(M, 0) > Aut H{(X, Z).

Set I' = &(m,(M, 0)); we call I the H'-monodromy group of the fibration. Moreover
the Galois group ¢ acts fiber by fiber on X and commutes with horizontal transport
of HY(X,,,Z). Consequently, ¥ commutes eclementwise with I'. We thus obtain a
direct sum decomposition

(x2.9.3)  H{(X,C) = DH(X,, O),
*
where y ranges over (.2, the set of characters of 4. The group ¢ is a quotient of

(Z)d)*/(Z/d). In the case of (12.9.1), ¥ = Z/d.

Let g, €9 be the natural generator of the inertia (= decomposition) group
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at s (cf. (2.23)). Then there is a unique y € & with x(g) = a, for each s€S and
by (2.23.1)
HY(X,, C), = H}(P,, L,) for each m e M.

The vector space H}(P,, L,) is defined over the field Q_(\"/Y) and even over its ring
of integers by (12.1.3).

(12.9.4) Set F = Q(y/1), V=HP,, L)), W=V®,F = @D °V wheree,

o €GalF
is a primitive idempotentin C®¢ F, °V=¢, W, and (1 ®1)e, = ¢, for all 5,7 cGalF.
The space W is defined over Q and we have

WQ)~ D HY(P, L,(F).

(12.9.5) Set W(Z) = GE?“FHI(P"’ L, (0)) where O denotes the ring of integers
of F. The monodromy group I' of the fibration stabilizes H(P,, L, (®)) for each cha-

racter y € ¢ and in particular stabilizes W(Z).

Lemma (x2.10). — Let nn: X — M be an algebraic fiber bundle satisfying (12.9.2)
and with non-trivial ramification for each s €S. Let T denote the H'-monodromy group of the
Sfibering, let G be the Sariski-closure of T' in Aut HY(X,, C). If T is of finite covolume in G(R),
then in the euclidean topology T, the projection of T on Aut V is dense in U(V, (), where y and V
are asin (12.9.4), Yo ts as in (12.1.1), provided there is a o € Gal Q(\d/f) with Y, indefinite
and 6+ + 1.

Proof. — Suppose that G(R)/I" has finite Haar volume. Then defining the integral
structure on HYX , C) as HYX,, Z), we infer that I' is commensurable with
G(Z) = G n Aut H(X,, Z) by (12.8). Inasmuch as W is a I'-stable subspace defined
over Q, it is also G-stable and the restriction of G(Z) to W is an arithmetic subgroup.
Consequently I'y, the restriction of I' to W, is arithmetic.

By (12.1.3), I, CU(V, ¢p), and indeed the Zariski-closure of I', contains U(V)
and even SL(V)—this last fact can be verified by computing the Lie algebras of the
Zariski-closures of {¥"; neZ} where y ranges over the pseudo-reflections of T,.

Set F = Q,(\d/f) We can regard U(V,{,) as the group of R-rational
points of an algebraic group U defined over F nR; namely as the subgroup
{(x, %) | x € U(V, {q)} of Restrg;g GL(V). The subgroup T, then becomes a subgroup
of Aut HY(P,, L, (0)) X Aut HY(P,, Lo, (0)) and is thus commensurable with U(0 n R).
By hypothesis, the group U(°V, °yy) = °“U(R) 1s not compact because the hermitian
form °y, is indefinite. It remains to explain why U(@ nR) is topologically dense
in U(R) if 14 oceGal(F nR/Q). This assertion is an immediate consequence of the
weak approximation theorem for algebraic groups over an algebraic number field,
which applies here since “U(R) is not compact (cf. [11], p. 192).
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Theorem (x2.x1). — Let X be the algebraic family (12.9.1) and let ' be the Hl-mono-
dromy group of the fibering. Assume that p satisfies condition (INT) of (3.11). If T is of finite
covolume in its Zariski-closure G(R) in Aut HY(X,, R), then T, is an arithmetic lattice in U(V, {,).

Proof. — By Theorem (10.9.1), I, is discrete in U(V, ;). It follows at oncc

from the Lemma (12.10) that for all ¢ € Gal(Q (4/1)/Q) with o+ + 1, “U(V, §) is
compact. It follows from (12.2) that I', is arithmetic in U(V, {,).

(x2.x2) The forcgoing results show that T, is arithmetic in U(V, {,) if and only
if Ty is of finite covolume in its Zariski-closure in Aut W(R).

13. Elliptic and Euclidean Cases

The investigation of the map 1, : Q.. > B(«), can be generalized to obtain a
class of elliptic and euclidean groups which generalize the stabilizers in I'; of points
in B(«); and on its boundary. We shall merely sketch the method.

(x3.x) Elliptic Case.

Let p; = (1,),es, satisfy

a) > 0,
z .
b) [ s

Augment S, by adjoining an additional element ¢ and set S =S, U {c}. Set
e =2 — Zs ey & = (W)seg. Fix a local system L on P — S with monodromy «
€8,

(e = exp 2mip. By (2.21) (in which y, must be replaced by p, — 1) the intersection
form ( , ) is negative definite. Fix a €§,, take as moduli space M the set of injective
yeP? with y(a) =0, y(c) = o and set

M, ={yeP®|y() = o, y(a) =0, y(S;)CP — }.

On the family of punctured lines Py, we extend L trivially on each R* near o and
by monodromy « along each P, y e M,,. Fix o0 e M. Lc'\t’ M denote the covering of M
corresponding to the monodromy of HY(P,, L)), and let M,, denote completion of the
spread M — M over M,,. The section

yw, = '];Ic (z —y(s)) " dz.e
gives a map

%,: M - H!{(P,, L,).
This map is homogeneous of degree 1 — .§c u, relative to the action of the multiplicative
group G, (y+>%) on M,,. By (3.9) the projectivized map is etale on M. Hence w0, is
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itself etale. Apply the reasoning of sections 8, g and 10 replacing the compactness of Q ,,,
by the compactness of M,,-(zero map of S,)/G,, together with the homogeneity. We
then get

Theorem (13.x.1). — 1) @, extends to a map M,, - HY(P,, L).
2) If u, satisfies (INT): forall s+t in S;, (1 —p, — @) * €Z, then the extension
of W, is an isomorphism.

Corollary (13.1.2). — If u, satisfies (INT), then the monodromy group T, is a finite
subgroup of U(N — 2), N =cardS,; and H(P,,L)/T, # M,,.

Remark. — The fact that HY(P,, L )/T, ~ G¥~? comes from the fact that T, is
generated by pseudo-reflections (cf. [4] (V.5.3) théoréme 3).

(x3.2) Euclidean Case.

Let B = (("'J)JES, SatiSfy

a) > O,
b) 2 oyp, =1
sE 8,

Augment S, as above, setting S =S, u{c}, p, =2 — Zs m, =1, and fix
a €8S,. Define ES

M, ={yeP?|y(c) = 0, y(a) =0, y(S;) CP — 0, (8,) +{0}}.

Set Q,, = M,/G,,; it is compact. We define L on Py, and define w, as above. The
local system L has no monodromy at co. Accordingly, we set S’ = {¢} and work
with Hyg (P, L,), cohomology of P — 0(S) with support in the family ¢(S8) of subsets
of P—0(S) closed in P —{w}). By (2.15.2), w, represents a non-zero cohomology
class in H}q,(P,, L,). For all y € Py, one has Res,(w,) = 1, the unit element of
the local system L which is trivial near co. Inasmuch as

{cycle around o, w,> =1

for all y e Py, the image of the map #,: M — Hys (P,, L,) lies on an affine hyper-
plane H. This hyperplane H on which w, lives is parallel to thc homogeneous one given
by <{cycle around w0, ) =o. This vector subspace of Hig,(P,, L,) can be iden-
tified with HY(P — o(S,), L,) where L, is the local system on P -— o(S,) with mono-
dromy p, (or equivalently with HY(P — o(S,), L;) by (2.6)). The intersection form
on HYP — o(S,), L,) is negative definite by (2.21).

The map y - w, is homogeneous of degrec o for the G,, action and therefore defines
a map @, : Q - H.

Theorem (13.2.1). — 1) W, extends lo a map W, of Qst - H.
2) If u, satisfies (INT), then the extended W, is an isomorphism.
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Corollary (13.2.2). — If y, satisfies (INT), then the monodromy group T, contains a
subgroup of finite index T of translations of the affine space H, H|T is an abelian variety, and

P;_,=0Q, = H/T, = (abelian variety)/(T'/T),
where N = card S.

14. Lists of . associated to discrete groups

(x4.x) Elliptic and Euclidean lists.

Set cardS, = N, assume p,> o for all seS, and Zs u, < 1. For any
s+t in §,, set "&b

k

(1 — e — )™
D = (I—Ey.,) !

sES,

8,4

We assume (INT): each %,,€Z U . By a ‘ miracle of small numbers ™ it will be
seen that D is an integer or oo (cf. (6.10) and (10.4) (i)).
Summing the N(N — 1)/2 equalities

I
([) Ly + wy=1— ;—“
gives
(2) (N0 %y, =00 5t
[
Hence
1 N(N-—1) 1\ N—=1)(N—2) N-—1
(3) Zk—“~*———2 *(N“I)(l—ﬁ) > T+
Since k,,> 2, (3) implics
— &> lj
D™ 4

Hence N<4 and N=4 onlyif D= oo, &,,=2 for all 5,¢ and p, = I for all
seS,. If N=3, (3) yields 4

o ami

and solving the system (1) yields

(( g7 R = Rl ),

I
D.

N)I'-‘

I
(14'1’1) §, = 2 zkst + thul) —k_“
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(14.1.2) The number D satisfying (4), must be an even integer or oo.

For if a sum of three integer reciprocals exceeds 1, the excess is an integer reciprocal
(cf. (6.10)).
We list all the possibilities:

k, D n, = w, D
N=3
Elliptic 2,2,n 2n n—1,n—1,]1
2’ 3’ 3 12 5’ 3’ 3
2’ 3’ 4’ 24 II’ 7’ 5
2,3, 5 60 29, 19, 11
Euclidean 2,3,6 ) u, = 1/k,
2,4, 4 o)
3) 3’ 3 @
N=4
Euclidean 2,2,2,2 @ u, = 1/4

(r4.2) Let N =card S and assume that N > 5. The foregoing results permit
one to infer limitations on the possible p = (u,),cs satisfying

1) g,>> 0 for each s €S,
2) Zou=2
3) k= —p,—w) 'eZ if gy, + <1

Case A: forsome s+ ¢t in S, u, + »,> 1. By (14.1), applied to the complement
of {s,t}in S, we have N =15. Set S ={s5¢4,b,¢c}. We define D by

I
e T =1+ g

Al
5

I

Then p, + py + 1, =1 —  and by (14.1.1) pg, my, 1. <
we find p, + u, <1 for ue{a b, c}.

Choosing p, > o,

N o=

(x4.2.1) D is an even integer (by (14.1.2)).
Case B: forsome s,t€ S, u, + w4, = 1. The remaining p’ s make up a euclidean p,
sothat N=5 or6. If N=5, S={s5100bc} with g,,gé and p, + p, <1

b 3

for uefabc) if > w. If N=86, p.=(p,, w,

.y
N
ol

I
Za
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Casec C: neither A nor B hold. Here we see the N(N — 1)/2 equalities
e -ty =1 — i yields
Ry

N(N—1) 1
2 2

Hence N <8 and N =8 implies %,, = 2 forall 5,1€S ie. p, = ! forall sesS.
In particular 4

(N—1)2p,>

(x4.2.2) If (4,),cs satisfies 1), 2), 3), then card § < 8.

We explain in section 15 how the list for N = 5 can be gleaned from the thesis of
Le Vavasseur. For N> 5, the lists are easily obtainable in Case C. Arrange p in
descending under y; > py > ... > py. Then (cf. (6.10.1)) (@) 4 ta), thay -+ -5 thy
must be on the list for N — 1 with (g, + uy) > 2p3. Iteration of this criterion leads
to the compact quotients PU(1, N — 3)/T, for N > 5. As for the non-compact quo-

tients with N > 5, by Case B these are (p.l, Uo, ;,i i i), only three solutions satisfy
. . I I
condition (INT) ((“Ll’ V‘Z) = ('2'3 ;), (i 4) ( )

(x4.3) Thecase N = 4. Let (W), ;4 be a 4-tuple of real numbers which satisfy
o< <1, By;=2. If the p’s are arranged with p, < pp < pg <p,, one has
w + s S+ g =2 — (w + pg), hence py +ps <1 A fortiori, py +pp <1
If py+ws<py +py then p+p,<1 for i4j; among {1,2,3}. If not,
e+ <1 for i=2,3,4, hence y;+ > 1 for j+ % among {2,3,4}. One
goes back and forth between those two cases by the transformation p; =1 —y,,

followed by the relabelling ¢ 5 — i. In the first case, if we put p; + g =1 — 1,

I 1 p
P~1+P‘s=1_}, P~2+P~s=1_;a we get

1 I I I
S ]

I I I I
P~2=;(1—;+§—;),

(x4.3.1) . Lo 1
e R ]
w=1 +§+-‘q—+§),

these formulas provide a solution of (INT) for each triple of positive integers [, ¢, 7]
satisfying })—{—é—{—%_{r, 1<p<L¢g<r<ow. The y =1 —y,; are given by the

same formula, with 1/p, 1/¢ and 1/r replaced by their negatives (see (14.3.2)). All
solutions of (INT) are obtained in this way.
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If L is a rank one local system on P! minus four points with monodromy
a = exp(2mip), the dual local system has monodromy «~' = exp(2mip’), with
@ =1 — . The vector spaces HY(L) and H!(L) are in duality. As they are of
dimension 2, this duality provides a canonical isomorphism between PH(L) and PHY(L):
to a line in HY(L), one associates its orthogonal in H}(L). On Q, this gives a canonical
isomorphism between the flat projective line bundles defined by p and p'. Via this
isomorphism, the holomorphic sections w, and w, are identified; for both w, and w,.
are of the first kind, and <w,, w,. ), given by the integral of the exterior product of two
holomorphic differentials is o; cf. (2.18) and the computations in (2.19). In view of

this identification, we will limit ourselves to the sccond case, with p’s given in descending

order by
, 1 111
=z (eririi)
y;—l(l-}—l 1+1)
(14.3.2) 2 poq
, 1 S S
P-s=5(1—§+5+;),
, 1 1 11
e ik
. 111
with 1<p<g<r< o, p+q+r<l°

For such a system of p’s, Q) ,,, can be identified with the spaceof y:{1,2,3,4} > P!
with y(1) =0, y(2) =1, »(3) = 0, ie. (using x:=y(4) as coordinate) with P
The multivalued map w admits as projective coordinates the integrals (dropping the
primes from p’)

Jz““(z — 1) T™(z — x) "*da.

In his cited paper [20], Schwarz proved that the multivalued map w induces a
bijection from the upper half plane Im(x) > o to a geodesic triangle in the hyperbolic
ball B(a)* with angles n/p, w/g, =/[r. It is of interest to deduce this classical result from
the theorems proved in this paper.

To begin with, w is étale (Prop. (3.9)) and has the local behaviour described
in § 9.6 near o, 1, and .

Next we show that w maps each of the segments ©; = ]— o, o[, 7, =] o, I1[,
and 13 = ]1, o[ to circular arcs in B(«)*. It suffices to prove this for ]— oo, of, since
the segments are permuted by o+ 1+ 0 0.

Take x near ]— oo, o[ and as homogeneous coordinates for w(x) the integrals J.;

and f:o with the principal determination of the integral. In these coordinates,
w(x) = w(x)~. Independently of coordinates, we get w(X) = ow(x) for ¢ an anti-

holomorphic involution of P! i.e. a Schwarz reflection. It follows that w(] — oo, o[)
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lies on the fixed point set of o, a circular arc. Consequently, w induces an injective
map of the real axis to the boundary of a triangle in P! with circular arcs which lic in B(«) *,
and the map w has a holomorphic extension to the upper half plane. From the fact that
the map w is étale and has image in B(a) ™, it follows by a maximum modulus argument
that the w-image of the closed upper half plane is the closed triangle A lying in B(a)*
with the given circular arc boundary. That w is a bijection follows from
Theorem (10.18.2) (whose proof simplifies vastly for N = 4).

We show finally that the circular arcs are geodesic lines in B(«)*. Regarded as
a single valued map of Qm, w is a w;(Q, o)-equivariant map. Set ¢; = w(7;), using
the determination of w described above, and let o; denote the reflection in ¢, (i = 1, 2, 3).
Then o; g; is a holomorphic sclf-map of P! with o;0;w an analytic continuation of w
regarded as a multivalued holomorphic function on Q. Indeed if i+ j, o;0; is the
monodromy in I', corresponding to one turn of x around d; N d;. Consequently
{o;0;; 1 <i<j< g} generates T,, B(x)" =TI ,(Auo, A), and the group generated
by {o;; i=1,2,3}is I, U o, I',. Itfollowsatonce that 6, B(a) " = B(«)*. Henceao,
is an isometry of B(«)*. Consequently ¢, is a geodesic line. Since our arguiments persist
under permutation of indices, all the sides of A are geodesics.

To sum up,

(14.3.3) The g-tuples p; < pp < py < gy satisfying o< <1 and Ty, =2
correspond pairwise to triangle groups [p,¢,r] with 1<p<¢g<r <o, the pairs
being related by pg ;=1 —p, t=1,2,3,4. p and p’ coincide only if r = oo.

(14.3.4) For any N > 4, the monodromy representations of =,(Q, 0) corres-
ponding to the pair (g, p’) arc contragredient, but for N = 4 these two representations

~

are equivalent via the canonical isomorphism of PHY(L) to PH!(L).

(14.3.5) Complex conjugation maps L to L. and induces a semi-linear isomor-
phism x of H(L) to H!(L) which maps H*!(L) to H'9(L). Identifying PH(L) to PH!(L)
via the canonical map, the map x induces the anti-holomorphic reflection of P! in the
boundary of the ball B(a)*. It is only for N = 4 that the complement of the closed
ball in P¥~2 is again a ball.

(x4.4) We list below all solutions for . satisfying condition (INT) where o < ¢, <1
for all s, Zp, = 2, and card S> 4. Set

N =card§,
d = lowest common denominator of u = (i), s,
n, = d[J-,,

NA = non-arithmetic (cf. (12.7.1) for criterion),
oo means that PU(1, N — 3)/T', is not compact.

No entry in the last (resp. ncxt to the last) column indicates compact quotient
(resp. arithmetic lattice).
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15. LeVavasseur’s list

In his 1885 paper [16 8], Picard gave as sufficient condition for the monodromy
group I' of the multivalued function

F(s,9) = [0 (4 — ) (1 — ! (5 — )™ da
(o< <1 all 3),
to be discrete the set of 10 integrality conditions

(x5.1) ()\,.+)\J-—-I)_‘GZ+U00, (3——2)\‘-)_1€Z+, o0<i+;j<sg3.

i*i

In his 1887 note [16 ¢] Picard asserts without proof that the above 10 integers need not
be > o but may be negative as well and still I" is discrete. R. Le Vavasseur, in his 1893
dissertation written under Picard’s direction found all solutions of

(L] Nty —1)TTeZ U, (3—}.%7\,-)_162, 0<i+j<3.

3
Setting ;=1 —x7 (0<:<3) and p,=2 — Zolp..- we can rewrite these 10 condi-
tions as

4
[L] %;P-i =2
(mtwy—1)"eZuw fo<itj<g

In [13], Le Vavasseur lists 102 solutions of [L]. If in addition one imposes the
inequalities 0 < p; < 1 for 0 <i <4, the resulting 5-tuple solutions, ignoring order,
reduce to 27. These are the 27 listed in (14.3) under N = 5; thatis to say, condi-
tion [L']:

L] o< k<1 (0<i<y),

(1 —w—p) 'eZUw ifi%j,

is equivalent to condition (INT) of (3.11). The reason for this striking coincidence is
explained by (14.2), Case A. Thus the apparently stronger integrality conditions imposed
by Picard in [16 5] and [16 ¢] are equivalent to our condition (INT).

To complete the historical record we note that Le Vavasseur’s condition [L]

. . . o , . 1 1 )
admits 10 solutions not satisfying L’, one of which, (0, 0,0,1 ——, 1+ —), consists
n n
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of an infinite number. The image of the map ), is not a ball for these 10 solutions. We
illustrate briefly the case of two solutions

_(_3 22 2 2)

: 3°3°3°3°3
I 1 I I

and = (~pri

g, 3’ g) By (2.21) the signature of the
, 2), and fw Aw> o asusual. Conse-
quently Eu:Q" - PU(V) maps Q" to the complement of the ball B(a),y. The
subset Qox of Q“ corresponding to the two points x, and x; coming together maps to
the fixed point set of the monodromy vy, of x, around x,—which is unipotent since
to + p, is integral (cf. (12.3.2)). Hence Qm maps to a line tangent to the boundary
of the ball at the point fixed by yy;,. It is easy to verify that the monodromy group I,
is a matrix group with coefficients in Z(4/1) and is therefore discrete in U(2, 1). How-
ever, lattice subgroups of PU(V) do not operate discontinuously on the complement of
the ball, so that the strategy of Section 10 cannot be implemented in this case.

1 11 1
(i) p = (— - I). Set §" ={4}. Here the intersection form is not

2 2

1) Set S={o0,1,2,9,4}, =(——,—,
(1) { 3,4} © 3’3
(1

hermitian form is (2, 1) rather than the usual

2’2’2’2’

defined on all of Hyg(P,, L,) but rather on H' = H{(P — {x, %, x5, %3}, L') and L’
has monodromy corresponding to (1, i, i, l). By (2.21), the intersection form has
signature (1, 1), 2222

As in the euclidean case (13.2), the image of ), : Q—>V = H}g)(Py, Ly) lies
on a two-dimensional affine hyperplane H which is parallel to H', H ~ P2 — ¢, where{is
the line in the projective 2-space, which is defined by the vector subspace H of V. As in
the preceding case, zT)u(QO,-) lies in the line of fixed points of the pseudo-reflection v,
for 1 <:< 3. By contrast, i”vu((i‘-j) is the point on the linc ¢ fixed by the pseudo-
reflection y; for 1 <i# j<3. The monodromy group I'; is a matrix group with
coefficients Gaussian integers and is therefore discrete.
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