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and to make use of the fact that g+if maps the disk univalently onto a domain
D with strong vertical symmetry. A theorem of Lehto’s asserts that N is sub-
harmonic ia C-—{f{0)}, and so, by a variant of Theotem A, N* is subbarmonic
in C*, except for a certain correction term. The symmetry of D causes N* to be
harmogic in D+, except for the same correction term. Now one uses the maximum
principle, together with some other facts, to prove the majorization N*N*,
which implies (6).
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Some Problems in Complex Analytic Geometry
with Growth Conditions

Phillip A. Griffiths*

The purpose of this talk is to raise a few questions in the general area of complex-
analytic peometry with growth-conditions.
1. Notatiens. We shall be concerned with a complex manifold M of the form
M=M-N
where M is an n-dimensional compact complex manifold and ¥ is a %-dimensional
complex submanifold, We assume given a metric on M and zn exhaustion function
T MR
such that near & we have approximately
©(p) ~ —log 5(p, N}

where 3{p, N) is the distance from M to N. If weset M[r]={pM:{p)=<logr}
then the Levi form
' L{z) = Y—188t/2
in the holomorphic rangent spaces to dM[r] will, for large r, have =n—%k—1
negative eigenvalues in the directions normal to N. The sign of the remaining
eigenvalues will depend on the curvature in the normal bundle tc M.
A prototypical example is when

M=P, N=P and M=p"-p

* Research partially supported by Grant MCS 77-07782 from the National Science Foundation
of the United States.
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Setting n=m+k+1 we may consider P* as the join

I P =prpt

corresponding to the direct sum decomposition C*Hi=Cmtlg C**' and use
homogeneous coordinates

2 W] = 240 con 20 Wys e, )

on P*, Then we may take

(z, W] = log || w/z|
for an exbaustion function. For k=n—1, M is €" with Euclidean coordinates
@1, LRl Cn):(wcffzos Rt ] wu-lf'fzﬂ} and ‘E({:):]Og ”{”-

We will be interested in the asymptatic growth properties of analytic and mero-
morphic functions, holomorphic vector bundles and their sections, analytic sub-
varicties, etc. as we go to infinity in M, cf. [4} and {12]. Thus we are studying the
behavior of essentiai singularities of analytic objects along an analytic subvariety, as
opposed to the rather different and more difficult guestions of singularities along the
real {2n—1)-dimensiona] boundary of a domain.

2. The Bezout problem. The growth of an analytic subvariety ¥ = M will be meas-

ured by
#l¥,r) =vol (Vir]y
where Vr]=¥NM[r] and vol (VirD is the volume of P[] relative to the given
metric on M. We recall that
Vol =7 [t
T ¥A

where ¢ is the (1,1) form associated to the metric (Wirtinger theorem). It is a hasic
theorem due to Bishop and Stoll (cf. [10]) that ¥ has a removable singularity
along N; ie., ¥ is an analytic subvariety of M, if and only if u{V, r) is bounded.
The transcendental Bezout problem is to estimate the growth of the intersection
VMW in terms of the growth of the analytic subvarieties ¥ and W of A

The problem arizses already when A is €" By the diagonal construction we
may reduce to the case where W is a linear space (cf. [6]). Then the Bezout estimate
holdsincase ¥ isa hypersurface, but fails when codim ¥ 2. Thus, for an analytic
curvein C* the growth of the rumber of points of intersection with a line is estimated
by the growth of the area of the curve, but Cornalba and Shiffman [5] save an
anaiytic curve ¥V in €2 where the corresponding statement is false. If we let

r=¥vnee

be the limits ol the asymptotic directions {E as pel tends to infinity, then the in-
tuitive reason for the failure of Bezout seems to be the somewhat arbitrary character
of I'; in any case, it certainly need not be evenly distributed. The Bezout estimate
is concerned with the intersection Properties of a neighborhood of I with lines in
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the P2 at infinity in C3, and there have been estimates on this intersection in terms
of w(¥,r) for almost all lines (ef. Carlson [3] and Gruman [8]), and in terms of
#(V,r) together with the growth of the osculating spaces associated to ¥ {cf. [86]

and Stolt [11]).
In his Harvard thesis [2), Moshe Breiner has clarified the Bezout problem and

-to some extent shed light on the general character of essential singularities of analytic
varieties. To explain what he did we take

M=p_p

and recall that for a & dimensional analytic subvariety V=M the Remmer:-Stein
theorsm [9] implies that V is algebraic if either

k=1 or k=1 and VMNP omiis an open set,
We take the case k=7 and set n=m+k+1 so that the decomposition (1) holds.

For each point gcP* the linear sparn P_"'_,E of P" and g js a P and a
special case of the main theorem in {21 is: Given nu=1 there exisis C.=0 such that
Jor any VicP"~P* and any ge Pt

(2 gV NP kg, r) = C,ut¥, ar).

For k=1 we recover the aforementioned Bezout theorem for analytic hypersarfaces
in " We may informally paraphrase his result by saying that the analytic Bezout
theorem holds in the first dimension in which the Remmert—Stein theorem allows
an essential singularity,

Breinec’s proof uses integral formulas from Nevanlinna theory and we would like
to discuss inmitively what he does, For each point ¢ we define the attraction of
¥V to g 0 be measured by the area of V[rjNU where U isa neighborhood of
¢ in M. Then Breiner's argument gives that the attraction to any particular g is
bounded by the average attezction to all points of P* and by integral geometry
this average attraction turns out to essentially be the area of Virl. In particular
it follows that the attraction of ¥ to g is the same for almosi al] points of P,
and so the erratic behavior encogntered in the set of asymptotic directions to a curve
in C* is precluded (this erratic behavior is even more evident for points in C2).
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Now his result about the attraction of ¥ to points gé€i¥ is undoubtedly true
for general situations VCM-=M—N provided that dim V=dim ¥. Still likely

but somewhat less evident is the

Ouestion. [s the attraction of ¥, to ¢€N equidistributed provided that for
targe r the Levi form L{z) has z=n—k—1 negative eigenvalues in the helomorphic
tangent spaces to dM[r]?

For example, if we let 3 be the usval quadratic transformation of P* along
P* and N the total transform of P*, then N is the projectivized normal bundle
to P* in P, and the question asks not only about the attraction of ¥ fo points
of P* but also about the normal component of the tangent spaces to V.

Another question we should like to discuss briefly arises from the use of curvature
integrals to measure growth. For an entire analytic set ¥,=C" we congider the

(Gauss map

¥ V- Gik,n)

that assigns to each smooth point p€ ¥ the complex tangent plane T,{V) viewed
a3 lying in the Grassmannian G{k,n) of k-planes through the origin in C". Clearly
y extends to a meromorphic mapping on all of ¥, and at the smooth points the
usual curvature matrix €, of F is the negative transpose of the pullback under
y of the curvature in the universal subbundle over the Grassmannian. The Chern
forms (€ are defined by |

— x
det {II+ Vz_nl. Qy] = {g’u (=1 e ().

We denoie by ¢ the standacd Kahler form on C*, and recail that (/&Y f,py0"
is the Euclidean area vol {(V[r]) of V[r} and
1 ¢ _ vol(Fir)
Hn(V,T)"E'!rTgV_(]r;Qo ==
is an increasing function of r with

lim #o(¥, 1) = multy ()
being the multiplicity of # at the origin. In [7] it is proved that the expressions
1 .
w,n) = WV‘[{; c(Qv) not~!

are well defined and increasing in r, and whose limiis as »-+~0 have to do with the
singularity structure of J at the origin. On the other hand, the guantities

1
PRES YV, F) = 0 Al
£ k—M1 V&"k( vIAY

are the coefficients in the expansion in powers of £ of the volume of the s-tube
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o {V.r)={gcC": §(g, Vir]) =&} around F[r]. These integrals may be thought
of as measuring the growth of the currents obtained by the standard smoothing of
the current defined by integration over ¥, and as such may be expectad to play
a role in such questions as extending functions from §J to C" preserving growth
conditions, Here we should like to pose the

Question. Is there a Bezout estimate for the refined growth indicator
wlVory = mW, i
[ETH

We remark that the analogue of Crofton’s formula

¥, 7 = Fa(ANV, ) dd
ACGR—k+L, M)
ts provided by the kinematic formula given in [7}, so that an affirmative answer to
ihis question would follow from plurisubharmonic properties of the elementary
symmetric functions of the 2nd fundamental form of ¥ in C"

3. Representing homology classes by analytic cycies. Recail that an analytic cycle
Z on a complex manifold is a locally finite formal sum ¥, mZ; of irreducible
analytic varieties with integer coefficients. The growth of Z will mean that of the
analytic variety |Z|=2|n|2;. If Z has pure dimension n—k there is the fun-
damental class {Q-cocfBeients)

Ny € Hyyon (M) 2= H¥(M).

A long-standing general problem is how much of H*™ (M) is represented by such
fundamental classes? When M is a compact algebraic variety thers is the famous
Hodge conjecture. At the opposite extreme, when M is Stein a theorem of Grauert
implies that afl of H®™(M} is represented by analytic cycles. Here the natural
analogue of the Hodge conjecture is to impose growth conditions on the cycles.

In general we may look for restrictions on #, imposed by Hodge theory. Suppose
we denote by HZ (M) the complex deRham cobomology and recall the Hodge
filteation FPHZ: (M) that may be defined as follows:

We consider the usual double compiex

A*(M) = & A™U(M)
L
obtained by decomposing the C™ forms into (p, ¢) type and writing d=3+.
The associated total complex is the deRham compiex, and the Frohlicher spectral
sequence has
Ept = HI(M, 09, E. = Hi.(M).

The Hodge filtration is that induced on the abutment of the E_ term. When M is
a compact Kihier manifold, E,=F.. and the Hodge filtration is

FPH¥(MY = HHM)D... QH»H-?(M)
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where Hip(M)=,,,.,H**(M) is the Hodge decomposition on cohomelogy.
When M is Stein EP?=0 for ¢=0 and zll FPHZ (M)=HE (M)
Alternatively, we consider the holomorphic deRham complex
0~C-P i gt .00
By the holomorphic Poincaré lemma this complex separates into short exact sequences
0 C-@2L. 2.0,
0 -~ 0240,
0 Lgrrd 20,
where QF is the sheaf of closed holomorphic g-forms. In cohomology we have
H¥™=1(5f G1) — HE (M, C) - H™{M, Q")
HE=2ar 0f) — H¥ (M, O - H™ M, QY
AN

AN
£ HY (M, QF) ~ HY{M, Q%Y - H/(M, %Y

A class neH% (M) isin FPHY, (M) if it is in the image of H¥~#{M, Q¥) in (3).
A basic fact is that n ¢ F*H¥ (M) for any analytic cycle Z. When M is Stein
this imposes no conditions and Grauert’s theorem provides the existence theorem.
Suppose now that McPY is a projective algebraic manifold, N=}.p¥—*
is a Jinear section of M, and M—=M —N. For example, when k=1, M is an 2ffive
algebraic variety and hence a Stein manifold. If ne HEX (M) restricts to n¢ HE (M)
then we have seen that f=#; for a penerally transcendental analytic cycle Z in M.
In fact, it is possible to provide a lower bound on the transcendence level of 2
as follows [4]: If 7 is primitive and 7+%*'x0 in the Hodge decomposition,
then
C)] a(zl, ry = Cr=rt

where C™ is a positive constant. In other words |Z| must be of finite order = 1.
It was also proved in [4] that the estimate (4) is sharp in case k=1. Intuitively the
reason that we were able to establish this had to do with the fact that the apalytic
Bezout theorem is valid in the codimension one case, and consequently the apalyiic
formalism goes well.

Now, recalling that for general £,

M=M-M.pt-*
a theorem of Andreotti-Grauert 1) gives

Ho (M, Q%9 -0 for p=k,
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50 that

HY M, Q5 — HE (M)
is surjective; i.e., FEHE (M)= - F2% (M) in this case, Consequently there are no
Hodge-theoretic objections to representing all of H*(M) by analytic cycles in this
particalar dimension ; note that this is exactly the dimension where the Remmert-Stein
theorem frst allows transcendental analytic varieties. We we may ask the

Question 3. For M=M—M-P"% as above, is all of H™(M) represented by
analytic cycles? Can we choose these cycles to have finite order =47
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